mipi DEVCON VIRTUAL EVENT

Ahmed EllaSerge Di MatteomixelRENESAS

High Speed MIPI CSI-2 Interface Meeting Automotive ASIL-B

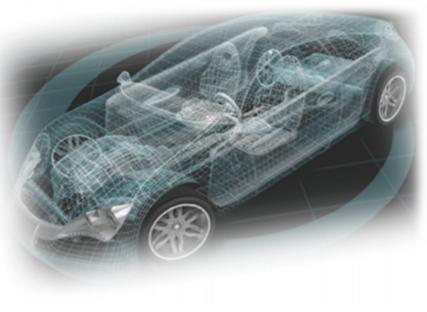
MOBILE & BEYOND

MIPI ALLIANCE DEVELOPERS CONFERENCE 22-23 SEPTEMBER

2020

Agenda

- Automotive SOC Design
- Renesas SOC System Overview and Challenges
- MIPI IP Design for Automotive



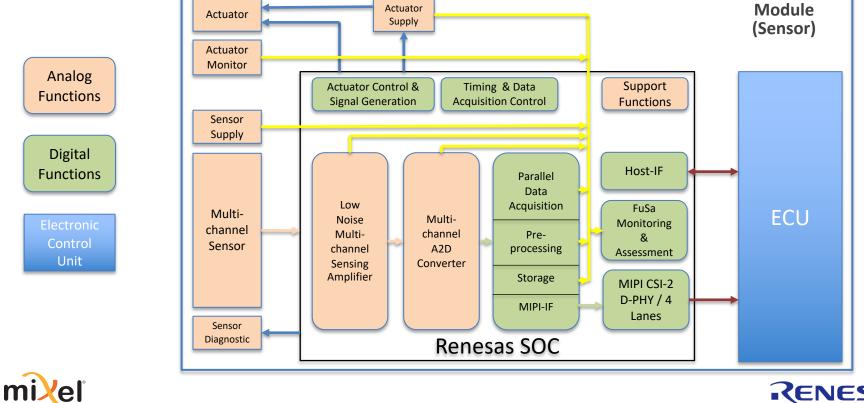
mipi[®]**DEV**CON

Automotive SOC Design

- Sensor signal controller & receiver
 - Multi parallel high-speed/high-resolution AFE channels
 - High speed parallel data acquisition, pre-processing & buffering
 - MIPI CSI-2 I/F for data transfer with up to 2.5Gbps/lane
 - AEC-Q100 compliance
 - ISO26262 ASIL-B compliance using highly flexible diagnostic with respect to permanent and transient failures including failure detection and correction
 - Device configuration and control Interface
 - Data acquisition, processing and buffering
 - Built In Self-Test & System Test support
 - Sensor signal timing generation and control
 - Safe-SPI I/F for configurability and controllability

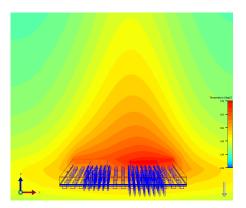
Autonomous vs Infotainment

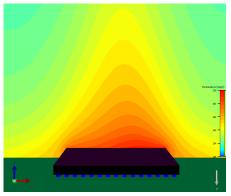
- Safety critical application
 - Process compliance to AEC-Q100 + ISO26262
- Challenging Safety critical Failure In Time (FIT) requirement
 - Driving failure detection, diagnostic architecture (technology, circuit, etc.)
 - Failure prevention by material selection (e.g. Ultra Low Alpha (ULA) package components)
- Extended temperature range operation
 - Tjunc up to 150°C
- Integration of 3rd Party IPs supporting ISO26262 requirements
- Intensive thermal performance analysis & power optimization
- System level diagnostic support capability



mipi **DEVCON**

VIRTUAL EVENT 2020


Overview Of System Design

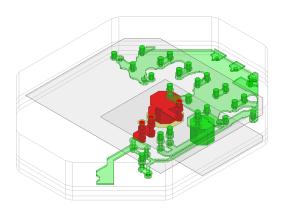


- Functional description & performance requirements
 - AEC-Q100 supporting Tj=150°C
 - ISO26262 ASIL-B supported by
 - Internal safety mechanisms for data path, configuration, supply monitoring, ...
 - External safety mechanisms for module level data path and supply monitoring
 - Actuator control and signal generation using GHz time base (supports cm level resolution)
 - Timing and data acquisition control operating at hundreds of MHz

mipi[•]**DEV**CON

- Functional description & performance requirements (cont.)
 - Multi-channel sensor interface w/ parallel channel acquisition using
 - Ultra-low noise high BW sensor sensing amplifier
 - High speed 14-bit hundreds of MSPS A2D converter
 - Data acquisition pre-processing, storage and internal MIPI-Interface control
 - MIPI CSI-2 Data Interface for acquisition data transfer w/ 4 Lanes and up to 10Gbps to HOST-ECU
 - Safe-SPI Host-ECU Interface for configuration & failure handling

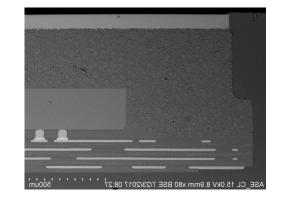
mipi **DEVCON**



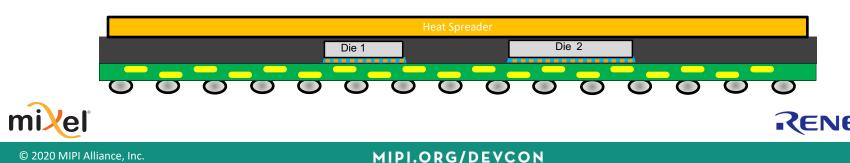
miXel

Unique Challenges To Renesas

- Very high transient failure rates
 - Driven by big amount of volatile memory (e.g. SRAM, DFF, etc.)
 - Error detection / correction using
 - ECC (SEC/DED) for internal data buffer
 - CRC for acquisition data to data buffer
 - MIPI CSI-2 data integrity (from buffer, Packet loss, footer w/ diagnostic information)
- Sensor signal timing generation and control accuracy (single digit GHz PLL / System base clock)
 - e.g. Single digit ps jitter rms



DEVCON


Unique Challenges To Renesas

- High speed / resolution parallel AFE control, data acquisition/pre-processing & buffering
- Many "firsts" for Renesas
 - First time use of 28nm technology
 - First time use of system in package / flip chip in BGA package

mipi[•]**DEV**CON

First time MIPI CSI-2 in automotive project

ISO 26262 Effort & Challenges

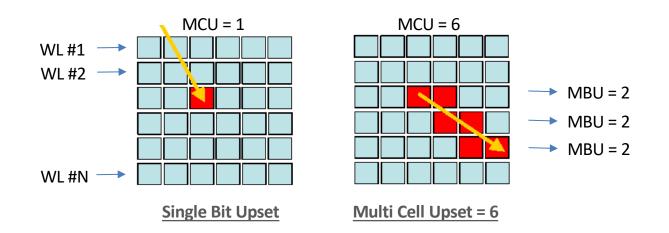
- Integration of 3rd Party IP's supporting ISO26262 requirements
- IP provider preparing ISO26262 Safety Case
- Development and alignment on FuSa requirements and their adaption to the IP
- Development processes according to AEC-Q100, IATF 16949:2016 and ISO26262
- Soft Error Rate (SER), caused by high speed neutrons and alpha particles, is largely the dominating source of failure rate (> 20,000 FIT)
 - This required a concurrent set of very effective counter measures

mipi^{DEVCON}

© 2020 MIPI Alliance, Inc.

ISO 26262 Effort & Challenges

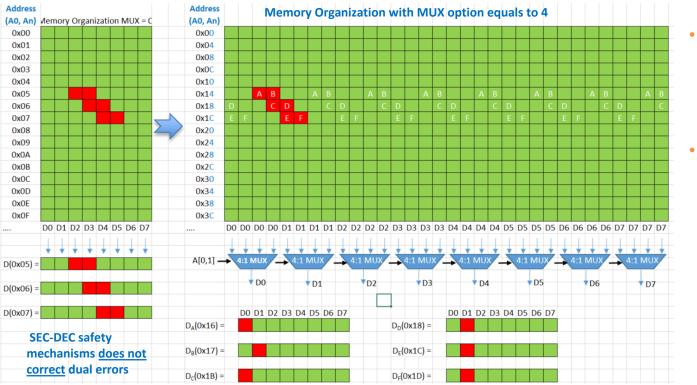
- SER mitigating measures:
 - Replacement of standard mold compound (~ 0.1 α·cm⁻²·hr⁻¹) and solder bumps (~ 1÷10 α·cm⁻²·hr⁻¹) with Ultra Low Alpha (ULA) mold compound and bumps material (≤ 0.002 α·cm⁻²·hr⁻¹).
 - Generation of SRAM with a high level of columns and rows multiplexing (MUX ≥ 8). This prevents SER to generate Multiple Bit Upset (MBU) within the same word line
- SER detecting measures:
 - Instantiation of 1-bit error correction (ECC) and 2-bit error detection (EDC) encoder/decoders for each memory
 - Checksum



© 2020 MIPI Alliance, Inc.

DEVCON

SBU/MCU/MBU Issue in SRAM

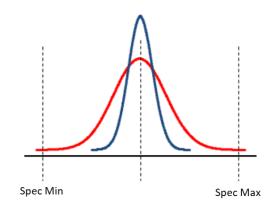

- SEC/DED safety mechanism alone is partially effective
- However, with the above example, with BL > 2, error detection is not ensured

The SBU Solution

SEC-DEC safety mechanisms does detect and correct single-error

- Memory cells belonging to the same data word are distributed to each other far away
- Thus, every SER event resulting in MCU > 0 is converted into a correspondent number of SBUs that can be individually detected and corrected

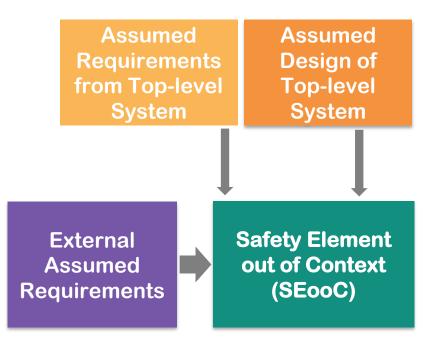
RENESAS


Auto vs Standard MIPI IPs

Reliability

Reliability can be opposite to Safety!

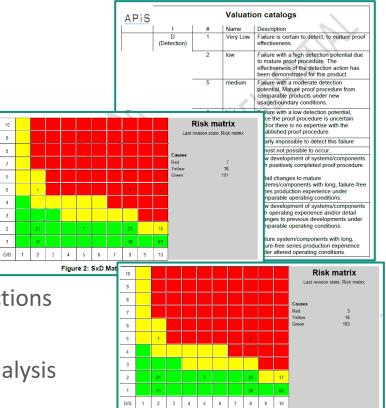
- AEC Q100 ambient Temperature
 - Grade 1: 125°C \rightarrow 150°C junction temperature
- Mission Profile of the environmental stressor
 - Caused by EM and Aging effects.
- Design Margins and CPK
 - For QM: CPK = 1
 - For ASIL: CPK = $1 \rightarrow 2$
- Extended PVT sign-off corners
- Aging Simulations and Self Heating



mipi[®]**DEV**CON

Safety: SEooC and AoU

- IP vendor has no prior knowledge of system
- Assumptions on Safety Functions
- AoU
 - Target ASIL
 - Operating Conditions for PHY
 - BIST Modes
 - Input Clock frequency requirements
 - Temperature Mission Profile
 - Sources of Baseline Failure Rate
 - e.g. Siemens SN 29500, IEC 61709, etc.
 - Transient Failures from high speed neutrons and alpha particles



mipi **DEVCON**

Safety: DFMEA

- **Dependent Failures: Internal and External**
- Each failure effect
 - Assigned severity rating
 - Correlated with the risk associated
- Ensure coverage of all systematic faults
- Outputs:
 - Identification and execution of Corrective Actions
 - DFMEA database and report
 - Qualitative analysis is key for quantitative analysis
 - Failure modes re-use in FMEDA

mipi **DEV**CON

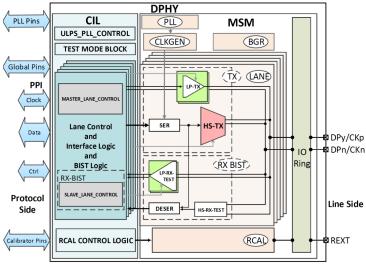
Figure 3: SxD Matrix Post Corrective Actions

9

8

7

5


1

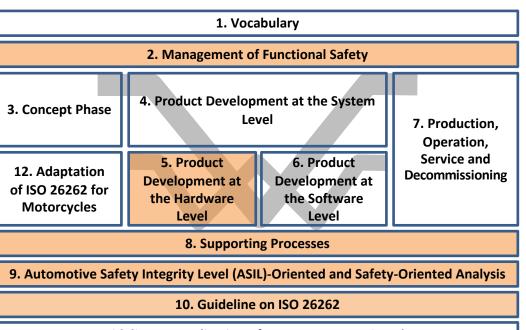
VIRTUAL EVENT 1 2020

Safety: FMEDA

- Hardware Safety Requirements
 - PLL to generate healthy clock
 - HS bursts must be transmitted correctly

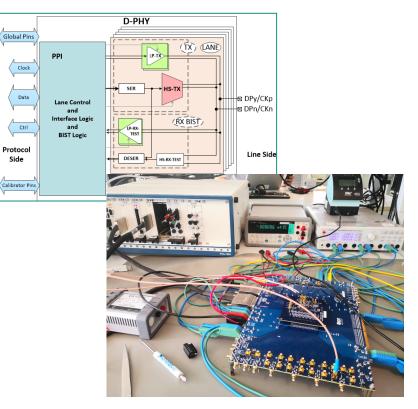
BFR for PRF set based on IEC 61709

No.	Block / Subblock (unique name)	Block / Component	Failure Rate Permanent λ [FIT]	Failure Rate Transient A _{transient} [FIT]	Failure Rate Distribution Permanent	Failure Rate Distribution Transient
1	D-LANE	Mixed Signal Module (MSM)	0.229793	10.927278	37.09%	39.48%
2	C-LANE	Mixed Signal Module (MSM)	0.052690	2.457030	8.50%	8.88%
3	Common MSM Blocks	Mixed Signal Module (MSM)	0.039728	3.633763	6.41%	13.13%
4	PLL	Mixed Signal Module (MSM)	0.120189	5.101928	19.40%	18.43%
5	IO Pad Ring	Mixed Signal Module (MSM)	0.135088	1.350884	21.80%	4.88%
6	dphy clock master	CIL-TOP	0.001493	0.149260	0.24%	0.54%
7	dphy clock slave (BIST)	CIL-TOP	0.000501	0.050109	0.08%	0.18%
8	dphy data master	CIL-TOP	0.009383	0.938207	1.51%	3.39%
9	dphy data slave (BIST)	CIL-TOP	0.012794	1.279374	2.07%	4.62%
10	test mode block (BIST)	CIL-TOP	0.017059	1.705831	2.75%	6.16%
11	ulps pll control	CIL-TOP	0.000384	0.038381	0.06%	0.14%
12	Control Common MSM blocks	CIL-TOP	0.000426	0.042646	0.07%	0.15%
13	Lane Alignment Logic	CIL-TOP	0.000019	0.002132	0.00%	0.01%


- Safety Mechanisms
 - Internal
 - External
 - MIPI D-PHY RX
 - MIPI CSI-2 RX
 - SOC RX
- FIT linked to the technology / package / temp
 RENESAS

Safety: Safety Manual

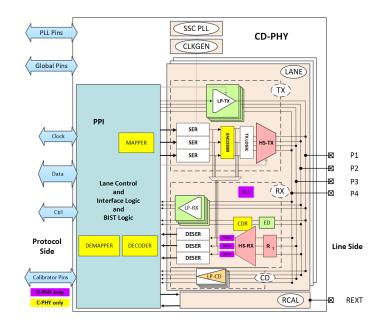
- AoU
- Assumed Hardware Safety Requirements
- Safety Goal Violations
- Safety mechanisms
 - Internal and External
- Safety analysis
 - DFMEA, FMEDA, DFA
- Safety Lifecycle Tailoring for IP



miXel

Testability

- IP Configurations: MIPI C-PHY, MIPI D-PHY, and MIPI C-PHY/MIPI D-PHY
 - Universal
 - MIPI CSI-2 TX+ / MIPI CSI-2 RX+
 - MIPI DSI TX+ / MIPI DSI RX+
- Loopback BIST
 - LB BIST enables periodic checking of faults
 - Helps achieve higher ASIL grade
- Lab validation
 - Using Loopback BIST
 - Eye-Diagram and compliance test
 - BER profiling for QoS assessment
- ATE validation
 - Using Loopback BIST
 - Full temperature range coverage by execution at 3 corner temperatures



Performance

- High bandwidth to allow higher sensor resolution and higher dynamic range
 - Up to 30Gbps in MIPI C-PHY/MIPI D-PHY
 4.5 Gsps IP
- Area
- Low EMI
- Risk Mitigation
 - Integrated MIPI sub-system
 - Deep MIPI system and SerDes expertise

mipi **DEVCON**

Auto Grade IPs

- World-class knowledge of MIPI IP
- Integrating MIPI subsystems into your SOC, safely
- Providing on-chip safety mechanisms to achieve higher system ASILs
- Widest errors detection coverage (> 98%)

• IP Auto grades: ASIL B & D

mipi[®]**DEV**CON

- Temperature Grade: 1 & 2
- Minimum CPK: 1-2
- Functional Safety Packages
 - Level 1 DFMEA
 - Level 2 FMEDA and Safety Manual (ASIL Ready)
 - Level 3 Full ISO 26262
 Functional Safety certification

RENESAS

ADDITIONAL RESOURCES: GLOSSARY

mipi **DEV**CON

- AEC Automotive Electronic Council
- AFE Analog Front End
- AoU Assumptions of Use
- ATE Automatic Test Equipment
- ASIL Automotive Safety Integrity level
- BFR Baseline Failure Rate
- BIST Built In Self Test
- BW Bandwidth
- CRC Cyclic Redundant Check
- Cpk Process Capacitance index
- DED Dual Error Detection
- DFA Dependent Failure Analysis
- DFMEA Design FMEA
- ECC Error Correction Code
- ECU Electric Controller Unit
- EMI Electro-Magnetic Interference
- FMEA Failure Mode and Effect Analysis

- FMEA Failure Mode and Effect Analysis
- FIT Failure In Time (i.e. per Billion of hours)
- FMEDA Failure Mode and Effect Analysis with Diagnosis
- IP Intellectual Property
- MBU Multiple Bit Upset
- MCU Multi Cell Upset
- PHY PHYsical hardware layer
- PLL Phase Lock Loop
- PRF Permanent Random Failures
- PVT Process, Voltage Temperature corners
- QM Quality Management (e.g. IATF 16949, ISO 9001, etc.)
- SBU Single Bit Upset
- SEC Single error Correction
- SER Soft Error Rate
- SPI Serial Parallel Interface
- SOC System On Chip
- SRAM Static Random-Access Memory
- ULA Ultra Low Alpha

RENESAS

miXel

mipi[®] DEVCON VIRTUAL EVENT

THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE

22-23 SEPTEMBER 2020

MOBILE & BEYOND