MIPI ALLIANCE DEVELOPERS CONFERENCE

Ashraf Takla Mixel, Inc.

MIPI D-PHYSM and MIPI CSI-2SM for IoT: AI Edge Devices

28-29 SEPTEMBER

MIPI.ORG/DEVCON

M@BILE & BEY@ND

© 2021 MIPI Alliance, Inc.

Agenda

2021

- Cloud vs. Edge Processing
 - History
 - Benefits and Tradeoffs
- Perceive Ergo[®] Edge Inference Processor Overview

MOBILE & BEYOND

- Block diagram
- target solutions
- Target Applications
- Why MIPI?

MIPI.ORG/DEVCON

- Why FDSOI?
- Mixel MIPI IP and Silicon Results

mipi[®]**DEV**CON

Back to the Future

2021

- Processing was traditionally done on-site before moving to the cloud
- More recently there a transition to do more processing at the edge using AI
- Edge and cloud processing complement each other and necessary in many applications to achieve optimal system performance
- What is the most efficient system partitioning between cloud and edge?

mipi^{DEVCON}

M@BILE & BEY@ND

Benefits of Processing at the Edge

- Latency: able to make decisions in real-time or near real-time vs. increased latency when processing at a data center or in the cloud
- Power savings: smarter devices require less bandwidth, provide less false notifications which can improve battery life

MOBILE & BEYOND

- Security and privacy: reduced chance for breach by reducing transmission of raw data to be processed somewhere else
- Connectivity: in some cases, connecting to broadband or even mobile may not be feasible so local computing is required
- Connection costs: even if connection is available, it may be worthwhile to save bandwidth due to connectivity costs

mipi[®]**DEVCON**

Benefits of Cloud Processing

- Performance: cloud processing offers massive computing capability that can't be replicated at the edge, essential for complex machine learning and modeling
- Storage Capacity: offers large storage capacity
- Scalability: ability to expand storage and compute resources at incremental cost
- Security: cloud provides high security once the data is in the data center, but at-risk during data transmission

MOBILE & BEYOND

 Maintenance & Upgradeability: easier to maintain and upgrade

mipi^{DEVCON}

Tradeoffs Between Edge vs. Cloud

Features	Edge Computing	Cloud Computing	
Latency	Low	High	
Bandwidth Required	Low	High	
Processing Power	Low	High	
Storage Capacity	Low	High	
Security	High: no transmission	Medium: cloud backup	
Cost	Medium	High	
Scalability	High: # of devices	High: Processing/storage	
Context Awareness	High	Low	
Power Efficiency	High	Low	
Maintenance & Upgradeability	Medium	High	
Кеу	Advantage	Disadvantage	
MIPI.ORG/DEVCON M @ BILE & BEY @ N D © 2021 MIPI Alliance, Inc			

Perceive ERGO[™]

2021

- Edge inference processor for use in devices such as security cameras or smart appliances
 - 20-100x more power-efficient, delivering 4 sustained GPU-equivalent floatingpoint TOPS at 55 TOPS/W
 - Able to process large neural networks in 20mW and supports a variety of advanced neural networks

MOBILE & BEYOND

MIPI.ORG/DEVCON

2021 Overview of System Design

0.00

MIPI.ORG/DEVCON

Ergo Block Diagram

2021

Perceive Target Solutions

Video Object Detection

2021

- Enables home or enterprise security to detect interesting motion and ignore false alerts
- Audio Event Detection
 - Able to detect critical sounds around the device to improve safety and contextual awareness
- Face Recognition
 - Can be used as standalone biometric or part of multi-factor authentication to unlock devices or objects
- Speech Recognition

MIPI.ORG/DEVCON

 Used for wakeup words, device-specific commands, and natural language interfaces for smartphone, smart toy, or home appliance

Perceive Target Applications

- Smart Home Security Cameras and Doorbells
 - Detect interesting motion and ignore false alerts
 - Recognize faces, voices, and people
 - Detect relevant objects animals, packages, vehicles, etc.
 - Use voice for local commands
 - Detect important sounds alarms, people, glass breaking, etc.

MOBILE & BEYOND

Describe people, vehicles, or even the actions in a scene

mipi[®]**DEV**CON

MIPI.ORG/DEVCON

Edge and Cloud in Smart Home Security System

- Ergo would reside at the edge and process data locally
- The edge devices would monitor movements, sounds, temperature, etc.
- Edge devices are typically connected to a local hub that is also connected to the cloud
- The cloud can be used for long term retention as well as machine learning

Perceive Target Applications

• Wearables

2021

- Detect important sounds around the user
- Use local voice commands and advanced wake words to simplify device UI
- Recognize faces, people, voice, and emotions
- Detect relevant objects around the user

MOBILE & BEYOND

Integrate data across multiple sensors

mipi[•]**DEV**CON

Edge and Cloud in Wearable Applications

- Ergo would be embedded into the wearable device
- Through the built-in sensors, it would be monitoring the environment and identify objects, people, sounds, etc.
- The wearable would connect to the cloud and internet, through a mobile device for example, where a huge data base is available including contacts, images, global maps, encyclopedias, etc.
- Like home security, the cloud can be used for long term retention, machine learning, and other applications

Perceive Target Applications

Portable computing

MIPI.ORG/DEVCON

2021

- Detect and recognize people and faces
- Detect other relevant objects and sounds

MOBILE & BEYOND

- Recognize voices and local voice commands
- Track emotions, attention, and eye location
- Blur or replace video conference backgrounds
- Improve audio or video signal

mipi[•]**DEV**CON

Perceive Target Applications

• Video conferencing

2021

- Detect and track people, faces, and voices
- Recognize individual faces and voices
- Audio noise reduction and intelligent muting
- Use gesture or voice for touchless control
- Blur or replace video conference backgrounds
- Gaze correction and audience analytics
- Detect other relevant objects and sounds

MOBILE & BEYOND

mipi[®]**DEV**CON

Why MIPI

2021

- MIPI was designed from the ground up to minimize power requirements while supporting high bandwidth and strict EMI requirements
- Many edge applications are battery operated
- MIPI CSI-2 is widely adopted for sensor applications
- MIPI D-PHY is the first and most widely adopted MIPI PHY today

MIPI.ORG/DEVCON

MOBILE & BEYOND

© 2021 MIPI Alliance, Inc.

Why FDSOI

MIPI.ORG/DEVCON

2021

- FDSOI provides the right mix to achieve better performance, with lower power, at lower cost—without the need to move to more costly FinFET processes
- Compared with bulk silicon, FDSOI provides additional flexibility, due to the programmability of body bias, resulting in higher performance and potential reduction in power and area

MOBILE & BEYOND

- 1. Body biasing allows trade-off between dynamic and leakage power resulting in lowest possible power consumption for workload and operating conditions
- 2. Reverse Body Bias (RBB) can be applied during stand-by mode to drastically reduce leakage current
- 3. FDSOI enables performance/frequency boost through Forward Body Bias (FBB)
- No wonder FDSOI is widely adopted for IoT devices!

mipi[®]**DEV**CON

Power and Area Saving Evaluation

- By applying Forward Body Bias (FBB), device size was minimized while maintaining the same performance
- By adjusting the FBB and RBB based on PVT you can either reduce the area or the power or both
- Achievable power and area savings for FDSOI process:
 - Active area reduction of ~55%
 - Power reduction of 14-50% across PVT

2021

Mixel MIPI Receiver IP

• MIPI D-PHY CSI-2 RX IP

2021

- Supports MIPI D-PHY v2.1 with backwards compatibility for v1.2 and v1.1
- High-speed transmitter running at 2.5Gbps/lane
- Low-power transmitter running at up to 80Mbps/lane
- 2 and 4 data lanes and 1 clock lane configurations
- Area optimized
- Achieved first time silicon success

Mixel MIPI Transmitter IP

• MIPI D-PHY CSI-2 TX IP

2021

- Supports MIPI D-PHY v2.1 with backwards compatibility for v1.2 and v1.1
- High-speed transmitter running at 2.5Gbps/lane
- Low-power transmitter running at up to 80Mbps/lane
- 4 data lanes and 1 clock lane
- Area optimized
- Achieved first time silicon success

Silicon Results

2021

MIPI D-PHY TX @ 1.5Gbps

MIPI D-PHY TX @ 2.5Gbps

MIPI.ORG/DEVCON

M@BILE & BEY@ND

<u>te) (im</u>

Mixel IP in FDSOI Processes

IP Name	Features	Node	
D-PHY Universal	V1.2; 2.5Gbps; De-skew; loopback testability.		
D-PHY Universal	800Mbps; Ultra low power; Wearables, IoT.		
D-PHY DSI TX	1.5Gbs; low Skew; Test modes.		
D-PHY CSI-2 RX	PHY CSI-2 RX 1.5Gbs; Test modes.		
LVDS TX	1.25Gbps; 4 Channel; 7 or 10 bits/channel	28FDSOI	
LVDS TX	1.25Gbps; 8 Channel; 7 or 10 bits/channel		
LVDS/D-PHY TX Combo	1.05Gbps; 4 Channel; Test modes.		
LVDS/D-PHY TX Combo	1.05Gbps; 8 Channel; Test modes.		
D-PHY CSI-2 TX	2.5 Gbps/lane; 4 lanes		
D-PHY CSI-2 RX	IY CSI-2 RX2.5Gbps/lane; 2 or 4 lanes32IY CSI-2 RX2.5Gbps/lane; 2 or 4 lanes2		
D-PHY CSI-2 RX			

MIPI.ORG/DEVCON

Mixel MIPI PHY Portfolio

2021

MIPI.ORG/DEVCON

- Industry leader in MIPI[®] interfaces and contributing member of the MIPI Alliance since 2006
 - MIPI D-PHY first silicon-proven in 2008
 - MIPI M-PHY[®] first silicon-proven in 2011
 - MIPI C-PHY first silicon-proven in 2016

- Complete integrated solution includes PHY, controller, and platform
- Widest coverage of process nodes and foundries: silicon-proven in 11 different nodes and 8 different foundries

MOBILE & BEYOND

mipi[®]**DEV**CON

Conclusion

2021

- Connected systems must strike balance between cloud and edge processing to optimize system performance
- MIPI specifications are uniquely designed to enable low power, high bandwidth requirements of edge devices
- FDSOI provides high performance with lower power at lower cost
- Processors like Perceive Ergo enable AI processing at the edge to make connected devices smarter, resulting in lower latency, improved battery life, and better security

MOBILE & BEYOND

 Mixel MIPI PHY IP enables SoC designers to leverage the benefits of MIPI with silicon-proven designs in FDSOI, lowering project risk

mipi^{DEVCON}

mipi[®] DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

THANK YOU!

28-29 SEPTEMBER 2021

MIPI.ORG/DEVCON

M@BILE & BEY@ND

© 2021 MIPI Alliance, Inc.

REFERENCES & ADDITIONAL RESOURCES

- From Cloud to Edge
- <u>A look at examples of IoT devices and their business applications in 2021</u>
- <u>What is edge computing? Everything you need to know</u>
- Edge Intelligence Makes Smart Homes Truly Intelligent
- <u>Autonomous Vehicles Drive AI Advances for Edge Computing</u>
- <u>Smart manufacturing and the IoT are driving the Industry 4.0 revolution</u>
- Smart Manufacturing: Cloud vs. Edge Computing
- MIPI White Paper: Enabling the IoT Opportunity
- It's Time to Look at FDSOI Again

mipi[®]**DEV**CON