
2020
SURVEY OF
COMPUTER
SCIENCE
TEACHING
Pedagogical Practices
in the U.S.

Contributors:
Megan McHugh
Elise Deitrick, PhD
Joshua Ball

Suggested Citation:
McHugh, M., Deitrick, E., & Ball, J.
(2021). 2020 Survey of Computer Science
Teaching: Pedagogical Practices in the
U.S. Codio Inc. Retrieved from
www.codio.com/research/2020-
computer-science-teaching-survey

“As anyone associated with formal education knows, teaching is not just
about access to a curriculum but also about having knowledge and
understanding of what needs to be taught and how it should be taught—
both content knowledge and pedagogical knowledge specific to that content.
The phrase pedagogical content knowledge (PCK) is used to describe this
crucial combination of content and teaching knowledge for teachers.”

– SHUCHI GROVER (P. XVII, 2020)

Forward

Executive Summary 2

Introduction 3

Survey Methods 3

Respondent Demographics/Context 4

Pedagogical Practices and Tools 6

Familiarity of Teaching Interventions 7

Implementation of Pedagogical Tools and Practices 9

Benefits and Challenges of Select Teaching Interventions 12

Perception of Evidence-based Pedagogy as Beneficial and Challenging 20

Conclusion 22

References 23

Contents

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 2

Research surrounding various pedagogical practices is
ample, but that does not necessarily mean educators
adopt these evidence-based approaches. We surveyed
over 100 computer science educators to find out why.

Our 2020 survey asked what practices computing
educators were familiar with, which practices they have
previously adopted and which they were considering
adopting.

Specifically, we aimed to answer the following
research questions:

• What evidence-based pedagogical approaches/
technologies are most well-known by CS educators?

• Which evidence-based pedagogical approaches/
technologies are most commonly implemented by CS
educators?

• What types of benefits motivate CS educators to try
new pedagogical approaches/technologies?

• What types of challenges de-motivate CS educators to
try new pedagogical approaches/technologies?

By far, E-Books are the most well-known and widely
used pedagogical intervention. According to our findings,
educators believe digitizing classroom materials make
resources more accessible to underrepresented students
and promote a better understanding of course concepts.

Our findings suggest that Flipped Classroom, where
teachers provide lectures out-of-class and hands-on
work in class, could be widely adopted in the future. Of
our respondents who have not implemented Flipped
Classroom, 38% stated they are very likely to implement
Flipped Classroom in the future, while the remaining 34%
would like to but have some concerns.

A trend noticed throughout the survey results indicates
that educators are likely to adopt a new pedagogical
practice that they believe will directly improve student
learning outcomes. Across the 20 pedagogical practices
included in our survey, the most beneficial outcomes
educators cited included:

• Improved student understanding of content
• Increased student engagement and/or interest
• Increased student participation in class

In a similar vein, we found that the biggest fear, or
perceived challenge, in introducing a new pedagogical
approach is that students will not like it.

This suggests that educators are less concerned with their
own benefits (e.g., time savings) than student benefits (e.g.,
increased understanding) when choosing whether to adopt
new practices.

We hope these findings will help researchers more
effectively market and disseminate their evidence-
based pedagogy and help administrators and educators
identify promising practices to bring into their computing
classrooms.

Executive Summary
What is really happening in Computer Science classrooms today?

Previous research, most notably Hovey, Barker, and Nagy
(2019) and Barker, Hovey, and Gruning (2015) has looked
at why Computer Science Educators adopt teaching
practices. Their research, a combination of interviews and
surveys, asked about more general teaching innovation.
However, they noted that “there is a need to increase the
use of evidence-based teaching practices”
(Hovey et al, 2019).

“Despite being researchers themselves,
the CS faculty we spoke to for the
most part did not believe that results
from educational studies were credible
reasons to try out teaching practices”

(BARKER ET AL, 2015)

We build upon previous research by focusing specifically
on evidence-based pedagogical approaches and
technologies specific to computer science education.
We examine motivations and challenges facing instructors
pertaining to computer science education innovations
rather than general education practices.

Our analysis maps each dimension—familiarity,
implementation, benefits, and challenges—to individual
pedagogical approaches/technologies to understand the
uniqueness of the different interventions. We hypothesized
that there are significant differences by innovation based
on innovation-specific factors such as publication date,
where it has been discussed, and ease of implementation
that are not captured by the more generalized survey
conducted by Hovey et al (2019).

Introduction

Survey Methods
We emailed 5,548 computer science lecturers and professors who have taught in
the US from a proprietary database a URL to the survey hosted on SurveyMonkey.

In the survey, we collected basic information about each
participants’ professional context after asking the same
series of multiple-choice questions along the dimensions
of familiarity, implementation, benefits, and challenges
for ten different well-documented, evidence-based,
computer science-specific pedagogical approaches
and technologies. We asked about the familiarity and
implementation of an additional eleven evidence-based,
computer science-specific pedagogical approaches at the
end. Due to this survey design, different analyses below
include different sets of practices and tools.

The survey took participants an average of 16 minutes
and 7 seconds to complete, as measured by the
SurveyMonkey software.

Out of the 273 CS and STEM instructors (professors and
lecturers) who participated in the survey, 105 completed
it. Respondents were not required to complete any of the
questions, resulting in partial data for 168 participants
and a full data set for 105 participants. In the following
analyses, only respondents who completed the survey
were included.

This way of recruiting participants has clear limitations.
Given the total number of CS educators in the US, the
number of respondents is small. This is compounded
by recruiting participants from a database built in a
proprietary, non-randomized, or representative way.
It should also be noted that this data was collected
during the beginning of the COVID-19 pandemic when
many educators were actively changing from in-person
to online instructional methods.

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 3

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 4

Looking at the type of institutions respondents were
affiliated with at the time of the survey, 46% were at a
4-year research university, 39% at a 4-year teaching
university, 12% at a community or technical college, and
2% at a K12 school.

Looking at education level by institution type, community/technical college educators were more than twice
as likely to have a master’s degree than a doctorate. At the same time, those at 4-year teaching or research
universities were nearly five times more likely to have a doctorate than a master’s degree.

In terms of education level, most respondents (72%)
reported having a Doctorate, while 24% reported having
a Master’s degree. Under 3% of respondents reported
having some college, a 2-year degree, or a 4-year degree.

Respondent Demographics

Education of RespondentsInstitution Types of Respondents

47%

39%

13%
1%

4-Year Research University 4-Year Teaching university

Community or Technical College K12

73%

24%

1%
1%

1%

Doctorate Masters

2-Year degree Some College

Doctorate

38

33

4

0

4-Year Research
University

4-Year Teaching
University

Community or
Technical College

K12

Master’s

8

7

9

1

4-Year Degree

1

0

0

0

2-Year Degree

0

0

0

1

Some College

1

0

0

0

4-Year Research
University

4-Year Teaching
University

Community or
Technical College K12

Doctorate Master’s

4-Year Degree 2-Year Degree Some College

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 5

Industry vs. CS Teaching

Many respondents of the survey have experience in
industry as well as education. The results indicate that
while 20 participants have only worked in education,
the other 80 respondents have at least one year of
work experience in the field. However, a majority of
respondents report having more years of experience
in education.

Years Teaching vs.
Years Teaching CS

We found a positive correlation between years spent
teaching overall and years spent teaching computer
cience. For upwards of 30 educators, their entire
teaching career has involved computer science.
This number drastically increases when you include
individuals who may have spent only a year or two
teaching a subject other than computing.

Teaching Background

CS teaching
only

CS teaching
with some
other teaching

Teaching
with some CS
Teaching

7%

69%24%

Time in Teaching vs Industry

Only
taught

Mainly
taught-some
industry

Taught and
Industry

Mainly industry-
some teaching

20%

47%

13%

20%

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 6

The pedagogical practices and tools we surveyed were taken from The Cambridge Handbook of Computing Education Research
(Fincher & Robins, 2019). The pedagogical practices were predominantly taken from Chapter 15, Pedagogic Approaches
(Falkner & Sheard, 2019), while the tools were taken from Chapter 21, Tools and Environments (Malmi, Utting, and Ko, 2019).

Activity Creation: Students create learning activities for
their peers, such as a physical sorting game or instructional
materials paired with an assessment
Assessment and Feedback Tools: Tools that analyze
student code submission for correctness, style, syntactic
structures, design, and test cases
Code Visualizers and/or Simulators: Visualizers can
represent the running of actual code to reveal the notional
machine or more abstract algorithms manipulating data
structures through animations. Simulators ask the user to
execute the steps while the system evaluates the correctness
of their inputted step.
Content Creation: Students learn by creating
instructional materials
E-Books: Provide instruction like a traditional textbook
with technology enhancements like instant feedback on
assessments, animations, and program visualizations
Games for Learning Programming: Games built to teach
aspects of programming such as Rocky’s Boots (logic gates),
Silicon Zeroes (hardware), and Gidget (debugging). Others have
a simplified language players use to manipulate the world, such
as Lightbot and CodeCombat
Flipped Classroom: Classrooms structured so students
cover course material (usually reading or video watching) before
class and engage in related hands-on activities during class
Jigsaw: Students are put into teams where each takes on a
role. The class re-arranges so that all students with the same
role form groups where they discuss their assigned topic
or task. The students then return to their original teams to
disseminate what they learned.
Live Coding: The instructor writes code during class as part of
a lecture while thinking aloud so students can hear the thought
processes happening behind the programming process
Pair Programming: The practice where two students work
together on the same programming task on a shared computer.
One student has the role of driver and has control over the
mouse and keyboard, while the other student acts as navigator
and directs the driver on how to write the program. These roles
are switched frequently throughout the exercise.

Pedagogical Practices and Tools

Parsons Problems: Problems that consist of mixed-up lines
of code that students reorder into a functional code segment
Peer Assessment: When a student analyzes another
student’s code. The reviewer provides feedback and a grade
based on their analysis, and the process is often scaffolded
by prompts or rubrics designed by the instructor.
Peer Instruction: Starts with a challenging conceptual
question to which students individually respond.
Students then discuss the problem in small groups,
then respond again.
Peer Review: When a student analyzes another student’s
code. The reviewer provides feedback based on their
analysis, and the process is often scaffolded by prompts
designed by the instructor.
POGIL: Process-oriented guided-inquiry learning is where
teams of students work together through inquiry-based
activities which help them uncover concepts themselves
Studio-based Learning: Students work in a shared
environment where technology aids collaboration,
discussion, and sharing of experiences
Tech-Assisted Collaborative Note Taking: During a
lecture, students collaboratively take notes in a real-time
note-taking application (e.g., google docs).
Test-First Development: A developmental approach where
it is encouraged that students write tests before writing code
(but not as strict as Test-Driven Development)
Test-Driven Development: A developmental approach
where students write automated unit tests that fail before
writing the corresponding code to pass the test. The result is
many rapid iterations.
Think-Pair-Share: A form of scaffolded discussion where
the teacher presents a question, students pause and think
about it individually, pair up with a peer to discuss, and the
class comes back together for individuals or pairs to share
their thoughts or discussions
Tools that Support the Writing of Programs:
Technology that supports the writing of programs including
educational programming languages, education-focused IDEs,
version control systems, and static code analysis

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 7

Familiarity with Teaching Interventions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E-books

Pair Programming
Peer Review

Flipped classroom

Peer assessment or review

Test-driven Development

Assessment and feedback tools

Peer Instruction
Tools that support program writing

Code viasualizers/simulators

Live Coding

Test-first Development

Think-Pair-Share
Games for learning programming

Parsons Problems

Content Creation

Activity Creation

Studio-based Learning
Tech-Assisted Collaborative Note Taking

POGIL

Jigsaw

Published about it Could describe it to a peer Read about or heard of it but could use a refresher Never heard of it

Familiarity of Teaching
Interventions
Familiarity was assessed with a Likert scale ranging from never heard about it
to read about it or heard of it but could use a refresher (which we categorized
as “unfamiliar”) to could describe it to a peer to Published about it (which we
categorized as “familiar”).

Upwards of 75% of respondents are familiar with these four practices/tools:

1. E-Books

2. Pair Programming

A couple of practices and tools we found surprisingly low on this list include
Code Visualizers and Simulators (56% familiar) and Live Coding (54% familiar).

Given the popularity of PythonTutor, which had over 200k users and was used
by “instructors in a dozen universities such as UC Berkeley, MIT, the University of
Washington, and the University of Waterloo” as of 2013 (Guo, 2013), and which
has grown to claim “[o]ver ten million people” on their main page, we would
have expected to see higher familiarity.

Similarly, with Mark Guzdial’s SIGCSE 2019 keynote (Guzdial, 2019) seen by
hundreds of CS educators demonstrating live coding, we expected higher
familiarity. In the same keynote, Parsons problems are listed on slide 64—but they
have even less familiarity (30%) than live coding.

Familiarity of Pedagogical
Tools + Practices

1. E-Books
2. Pair Programming
3. Peer Review
4. Flipped Classroom
5. Peer Assessment
6. Test-Driven Development
7. Assessment and Feedback Tools
8. Peer Instruction
9. Tools that Support

Program Writing
10. Code Visualizers and Simulators
11. Live Coding
12. Test-First Development
13. Think-Pair-Share
14. Games for Learning Programming
15. Parsons Problems
16. Content Creation
17. Activity Creation
18. Studio-Based Learning
19. Tech-Assisted

Collaborative Note Taking
20. POGIL
21. Jigsaw

3. Peer Review
4. Flipped Classroom

Published about it

Could describe
it to a peer

Read about or
heard of it but could
use a refresher

Never heard of it

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 8

We also considered what pedagogical practices and tools the respondents were
not just familiar with but were experts in. The pedagogical practices and tools
most frequently published on by our respondents include:

1. Test-driven Development

2. Tools that Support Program Writing

3. Games for Learning Programming

Each intervention has been researched by seven of the CS educators surveyed.

Interestingly, despite games for learning programming being published about by
our respondents at a higher rate than 17 of the other practices and tools, less
than 50% of respondents could describe it to their peers.

Pedagogical Practice Publications
by Respondents

1. Test-Driven Development (7)
2. Tools that Support Program

Writing (7)
3. Games for Learning

Programming (7)
4. Flipped Classroom (6)
5. E-Books (4)
6. Assessment and Feedback

Tools (4)
7. Peer Instruction (4)
8. Code Visualizers and

Simulators (4)
9. Test-First Development (4)
10. Think-Pair-Share (3)
11. Content Creation (3)
12. Activity Creation (3)
13. Studio-based Learning (3)
14. Pair Programming (2)
15. Peer Assessment or Review (2)
16. POGIL (2)
17. Peer Review (1)
18. Live Coding (1)
19. Parsons Problems (1)
20. Jigsaw (1)

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 9

Implementation of Teaching Interventions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E-books

Pair Programming

Assessment and feedback tools

Flipped classroom

Peer assessment or review

Tools that support program writing

Peer Instruction

Test-driven Development

Code viasualizers/simulators

Games for learning programming

Yes No

Many of the most implemented pedagogical practices
align with the familiarity rates of these practices. Each of
the four practices well known by 75% of the respondents
is also used by upwards of 50% of respondents:

• E-Books (1st in familiarity, 1st in implementation)

• Pair Programming (2nd in familiarity,
2nd in implementation)

• Peer Review (3rd in familiarity, 5th in implementation)

• Flipped Classroom (4th in familiarity,
4th in implementation)

Implementation of Pedagogical Tools
and Practices

The most widely known and widely implemented
pedagogical tool is E-Books. Upwards of 70% of
respondents use this tool in their classroom.

One teaching intervention, Assessment and Feedback
Tools ranked 7th in familiarity yet is the 3rd most commonly
used by educators. Only 61% of 102 respondents reported
being familiar enough with Assessment and Feedback
Tools well enough that they could describe them to a peer.
However, 63% of 102 respondents asked if they currently
use these tools indicated that they do. The familiarity to
implementation rates of Assessments and Feedback
Tools are more closely aligned than any other pedagogical
intervention. This could be due to institutional adoption of
Learning Management Systems (LMSs) and similar tools,
which frequently offer assessment and feedback tools
as features.

Done

Not
Done

E-books

Pair Programming

Assessement feedback tools

Flipped classroom

Peer assessment or review

Tools that support
program writing

Peer instruction

Test-driven Development

Code visualizers / simulators

Games for learning
programming

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 10

In the top spot, Flipped Classroom. Not only is Flipped
Classroom the 4th most well-known and implemented
practice, but it’s also the method that most educators
cite they are “very likely” to use in the future. Additionally,
the skepticism surrounding Flipped Classroom is by far
the lowest among the surveyed pedagogical interventions.
Of all the respondents who have never tried Flipped
Classroom, only 28% have no intention of doing so in
the future.

What other practices are educators eager to try that they
have not already?

• Pair Programming
• Peer Instruction
• Test-Driven Development
• Peer Assessment

Which pedagogical practices are the most up and coming in
CS education?

Three of these interventions, Pair Programming, Peer
Instruction, and Peer Assessment, allow students to
simultaneously build their technical and soft skills.
This list validates the idea that developing social skills
among computing learners is becoming a cornerstone
of the classroom.

Previous research has shown that social skills such as
written and oral communication, project management,
and teamwork are commonly lacking in graduating
CS students but expected by employers (Radermacher
& Walia, 2013). Similarly, Radermacher and Walia found
testing on their frequently identified deficiency list,
so these up-and-coming pedagogies directly address
industry feedback. Their potential upswing may be a
reaction to industry requirements as opposed to the
evidence of their effectiveness produced by researchers.

Future Implementation of Teaching Interventions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flipped classroom

Live Coding

Pair Programming

Peer Instruction

Test-driven Development

Peer Review

Peer assessment or review

Think-Pair-Share

Test-first Development

Content Creation

Parsons Problems

Activity Creation

Studio-based Learning

POGIL

Tech-Assisted Collaborative Note Taking

Jigsaw

I already do/use this and
plan to continue

Very likely

Would like to have but
have concerns

Have used in the past but
not planning on using
again

Not at all

Flipped classroom
Live Coding

Pair Programming

Peer Instruction

Test-driven Development
Peer Review

Peer assessment or review

Think-Pair-Share
Test-first Development

Content Creation

Parsons Problems
Activity Creation

Studio-based Learning
POGIL

Note Taking

Jigsaw

Very likely

Would like to have but
have concerns

Have used in the past but
not planning on using again

Not at all

I already do/use this and
plan to continue

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 11

• Live Coding

• Pair Programming

• Peer Review

• Tech-Assisted Collaborative Note

Considering this list in the context of the COVID-19 pandemic, which these
results were collected during, we have to consider that some educators
struggled to translate these practices to remote learning. Notably, Live Coding,
Pair Programming, and Tech-Assisted Collaborative Note-Taking are generally
synchronous activities.

What practices have educators implemented
but are not proving to be sustainable?
When we asked educators about their plans to use various practices and tools in
the future, one of the categories was “Have used in the past but not planning on
using again.” This implies that there is some reason (e.g., challenges implementing,
feedback from students) that made their experimentation with the practice or tool
flop.

At the top of the list are:

Practices Educators Have
Used Previously, but
Do Not Intend to Use Again

• Live Coding (8)
• Pair Programming (7)
• Peer Review (6)
• Tech-Assisted Collaborative Note (6)
• Flipped Classroom (5)
• Peer Assessment (5)
• Think-Pair-Share (5)
• Peer Instruction (3)
• Test-Driven Development (3)
• Content Creation (3)
• Jigsaw (3)
• Test-First Development (2)
• Activity Creation (2)
• Studio-based Learning (2)
• Parsons Problems (1)
• POGIL (1)

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 12

Implementing a new pedagogical practice in the
classroom takes an investment of time, research,
departmental support, money for resources,
and possibly professional development. Although
educators or students may benefit from particular
practices, instructors have an acute awareness of
the challenges that come with each teaching method.
This section explores the benefits and challenges
of a few interventions on a practice-by-practice
basis and what may indicate future use.

Most Implemented: E-Books

Educators use E-Books to offer course textbooks
in a digital format, often accessible from desktop,
tablets, or mobile devices. Roughly 93% of educators
are familiar with E-Books, and upwards of 70% of
survey respondents have implemented E-Books

Benefits	and	Challenges	of	Select	
Teaching Interventions

in their courses. This makes E-Books the most
widely used pedagogical intervention among our
survey respondents.

Previous research found that E-Books allow students
to read faster than traditional print textbooks and
that student performance on assessments increases
(Patel & Morreale, 2014).

The results of this survey suggest that a reason
E-Books are a popular intervention is educators’
perception of the learning benefits students
experience. Educators who both use and do not
use E-Books likely believe that not only are these
materials more accessible to underrepresented
students, but they also help improve student learning
outcomes and increase student grade performance.

E-Book	Benefits

0

5

10

15

20

25

30

35

40

45

50

Improved student
understanding of

content

Increased student
engagement/interest

Greater material
coverage

More inclusive of
underrepresented

students

Improved student
grade performance

Increased teacher
time savings

Students will be
better prepared for
their future careers

Not Done Done

Students will be
better prepared for
their future careers

Increased
teacher time

savings

Improved
student grade
performance

More inclusive for
underrepresented

students

Greater
material

coverage

Increased
student

engagement/
interest

Improved student
understanding

of content

Not Done

Done

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 13

Overall, educators seem less concerned about the challenges that come with implementing E-Books when
compared with other pedagogical interventions.

Interestingly, the order of perceived challenges varies slightly between those who have adopted E-Books and
those who’ve not.

Here is a brief breakdown of order based on history of implementation:

Top Concerns of Educators Who Have
Adopted E-Books

• Students may not respond well to
or even like E-Books

• Not enough time
• Lack of access to resources needed

to try this
• Unfamiliar with resources/logistics needed

Top Concerns of Educators Who Have Not
Adopted E-Books

• As an educator, they are unfamiliar
with E-Book resources and the logistics
needed to implement the materials

• Not enough time
• Lack of access to resources needed

to try this

E-Book Challenges

0

5

10

15

20

25

30

35

40

45

50

Stude
nts

 m
igh

t n
ot

like
 it

Not e
nou

gh
tim

e

Unfa
milia

r with
 re

sou
rce

s/lo
gis

tics
 need

ed

La
ck

of a
cce

ss
to

res
ourc

es n
eed

ed
to try

 th
is

Satis
fied

 w
ith ho

w I t
eac

h curr
en

tly

Mis-
matc

h with
stu

dent
s I

tea
ch

Not e
nou

gh
 ev

iden
ce

it w
ork

s

Slow dow
n m

ate
ria

l co
ver

ag
e

Incom
pa

tible c
las

sro
om

 se
tup

Disc
ou

rag
ed

by colle
ag

ue
or p

eer

Dep
art

ment
set

s c
urric

ulum

Too
large

 of a
cla

ss
siz

e

Inter
fere

with
ten

ure
/pr

om
otio

n

Not
Done

Done

Not Done

Not enough
evidence it

works

Mis-match
with students

I teach

Satisfied with
how I teach

currently

Lack of
resources
needed to

 try this

Students
might not

like it

Done

Slow down
material

coverage

Incompatible
classroom

setup

Discouraged
by colleague

or peer

Department
sets curriculum

Too large of
a class size

Interfere
with tenure/
promotion

Unfamiliar with
resources/

logistics needed

Not enough
time

| 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 14

Pair Programming

48% of educators use or plan to use pair programming as
a pedagogical practice. Pair programming involves two
students working together on a single computer to work
through programming together. Ideally, each student will
get the opportunity to control the workstation with the
guidance of their partner.

Previous research finds that students who typically
score low in CS1 & CS2 courses perform better with the
intervention of pair programming (Radermacher & Walia,
2011). The results of our survey indicate that educators
find additional benefits associated with Pair Programming.
Educators believe that it allows students to be more
engaged in their work and gain more substantial interest
in programming. This echoes what we see in existing
research, which “strongly showed that pair programming
in the classroom, despite some shortcomings, results in
significant improvements in student performance, as well
as improving recruitment into, and retention in, computer-
science related majors” (Jacobson & Schaefer, 2008, p.93).

They also believe it has an additional benefit of allowing
students to be social while learning and developing their

soft, collaborative skills. This translates well into
educator’s belief that Pair Programming prepares students
for a future career in the computing field. Often, lack of soft
skills is cited to be a problem in the professional skills gap
(Radermacher & Walia, 2013).

Of course, educators have concerns about using the
intervention as well. The most considerable concern was
that students might not like it. The next four concerns,
with far fewer instructors concerned, were logistical: not
enough time, incompatible classroom setup, slow down
material coverage, and unfamiliar with resources/logistics
needed. The last concern before a second noticeable drop
off in instructor count, mismatch with students I teach, is
an interesting one given the above discussion of how pair
programming could help address the technical skills gap
between academia and industry.

Our results indicate that Pair Programming will continue
to be used in the future of computer science education.
Of those who do not currently use pair programming
exercises or assignments, 53% of them would like to
implement the intervention in the future.

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 15

Pair Programming Challenges

Not Done

Done

0

10

20

30

40

50

60

70

80

Students might not
like it

Not enough time Incompatible
classroom setup

Slow down material
coverage

Unfamiliar with
resources/logistics

needed

Mis-match with
students I teach

Too large of a class
size

Lack of access to
resources needed to

try this

Satisfied with how I
teach currently

Too small of a class
size

Not enough evidence
it works

Department sets
curriculum

Discouraged by
colleague or peer

Not Done Done

Students
might not

like it

Not enough
time

Slow
down material

coverage

Unfamiliar with
resources/

logistics needed

Mis-Match
with students

I teach

Lack of access
to resources

needed to try this

Too small of a
calass size

Department
sets curriculum

Too large of
a class size

Satisfied with
how I currently

teach

Not enough
evidence it

works

Discouraged
by colleague

or peer

Incompatible
classroom

setup

Pair	Programming	Benefits

0

10

20

30

40

50

60

70

80

Improved student
understanding of content

Increased student
engagement/interest

Improved student social
skills

Increased¬†student
participation in class

Students will be better
prepared for their future

careers

Improved student grade
performance

More inclusive of
underrepresented

students

Increased teacher time
savings

Greater material
coverage

Not Done Done

Not Done

Improved
student

understanding
of content Increased

student
engagement /

Interest

Improved
student social

skills
Increased
student

participation
in class

Students
will be better
prepared for
their future

careers Improved
student grade
performance

More inclusive of
underrepresnted

students

Increased
teacher time

savings

Greater
material

coverage

Done

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 16

Assessment and Feedback Tools

Assessment and feedback tools allow instructors to auto-
grade assessments and projects or provide students with
automated feedback based on their responses. There’s
no denying that these tools play an important role in
giving educators more time and the ability to teach more
students, but what do educators have to say?

Besides saving instructors’ time, educators believe that
assessment and feedback tools primarily benefit students.
A peek at the first four benefits include:

1. Students gain a better understanding of
course content

2. Improvement in student grade performance
3. More engagement and interest from students
4. Students will be better prepared for their

future careers

Understandably, the 5th benefit is increased teacher time
savings. However, it is notable that educators primarily
recognize that students benefit from the instant feedback
in assessment and feedback tools.

Based on the survey responses, it appears that the most
significant barrier instructors have to overcome before
implementing assessment and feedback tools is time.
This could be due to the time to learn the tool and create
automated graders as the next two concerns are about
lack of access to resources to try this and unfamiliar with
resources/logistics needed.

Aside from that, less than 20% of educators have
concerns about the tools’ actual impact on their course
or students. This could be the reason why nearly ⅔ of
instructors already use these tools in some capacity.

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 17

Assessment	and	Feedback	Tool	Benefits

0

10

20

30

40

50

60

Improved student
understanding of content

Improved student grade
performance

Increased student
engagement/interest

Students will be better
prepared for their future

careers

Increased teacher time
savings

More inclusive of
underrepresented

students

Increased¬†student
participation in class

Greater material
coverage

Improved student social
skills

Assessment and Feedback Tool Benefits

Not Done Done

Not Done

Improved
student

understanding
of content Increased

student grade
performance

Increased student
engagement/

interest
Students will be

better prepared for
their future careers

Increased
teacher time

savings

More inclusive of
underrepresnted

students

Increased student
participation in

class

Greater
material coverage

Improved
student

social skills

Done

Assessment and Feedback Tool Challenges

Not Done

Done

0

5

10

15

20

25

30

35

40

45

50

Not enough time Lack of access to
resources needed to

try this

Unfamiliar with
resources/logistics

needed

Students might not
like it

Slow down material
coverage

Mis-match with
students I teach

Too large of a class
size

Too small of a class
size

Not enough
evidence it works

Satisfied with how I
teach currently

Department sets
curriculum

Discouraged by
colleague or peer

Incompatible
classroom setup

Interfere with
tenure/promotion

Assessment and Feedback Tool Challenges

Not Done Done

Not enough
time

Lack of access to
resources needed

to try this

Students
might not

like it

Slow down
material

coverage

Mis-match
with students

I teach

Too small of a
class size

Satisfied with
how I teach

currently

Discouraged
by colleague

or peer

Too large of
a class size

Not enough
evidence it

works

Department
sets curriculum

Incompatible
classroom

setup

Unfamiliar with
resources/

logistics needed

Interfere
with tenure/
promotion

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 18

Flipped Classroom

As a pedagogical intervention, flipped classroom breaks
the mold of traditional classroom learning and lectures. It
is based on the idea that students learn course material
independently, and class time is used flexibly to engage
with the concepts on a deeper level.

Educators believe that there are primarily two compelling
benefits of using flipped classroom: students’
understanding of course concepts improves, and students
are more likely to participate in class than in a traditional
lecture-style environment. This is also the one intervention
with a significant number of educators citing that Flipped
Classroom learning allows them to cover more material
within a semester.

Despite the benefits of improved understanding by
students, many educators fear that their students won’t
like the learning model. This concern is followed closely
by the challenge of time it would take to implement this
pedagogical practice. It would require instructors to
prepare and provide most course material outside of class
and possibly alter their existing homework assignments to
better fit class time.

Flipped	Classroom	Benefits

0

10

20

30

40

50

60

70

Improved student
understanding of content

Increased¬†student
participation in class

Increased student
engagement/interest

Greater material coverage Improved student grade
performance

Students will be better
prepared for their future

careers

Improved student social skills More inclusive of
underrepresented students

Increased teacher time
savings

Flipped Classroom Benefits

Not Done Done

Not Done

Done

Improved
student

understanding
of content Increased

student participation
in class

Increased student
engagement/

interest
Greater

material coverage

Improved
student grade
performance

Students will be
better prepared
for their careers

Improved
student

social skills

More inclusive of
underrepresented

students

Increased teacher
time savings

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 19

Flipped Classroom Challenges

Not Done

Done

0

5

10

15

20

25

30

35

40

45

50

Students might not
like it

Not enough time Lack of access to
resources needed to

try this

Mis-match with
students I teach

Incompatible
classroom setup

Unfamiliar with
resources/logistics

needed

Slow down material
coverage

Too large of a class
size

Satisfied with how I
teach currently

Not enough
evidence it works

Discouraged by
colleague or peer

Department sets
curriculum

Interfere with
tenure/promotion

Too small of a class
size

Flipped Classroom Challenges

Not Done Done

Students
might not

like it

Not
enough time

Mis-match
with students

I teach

Slow down
material

coverage

Too large of a
class size

Not enough
evidence it

works

Satisfied with
how I teach

currently

Discouraged
by colleague

or peer

Lack of access
to resources
needed to

try this Department
sets curriculum

Interfere
with tenure/
promotion

Too small of a
class size

Unfamiliar with
resources/

logistics needed

Slow down
material

coverage

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 20

To consider the overall perception of evidence-based
pedagogy, we look at how the various pedagogical
approaches and tools we asked about stack up
against each other.

Benefits
When it comes to the most beneficial practices
and tools, all of which have upwards of 25% of
educators strongly believing that they are beneficial,
there are very few commonalities between them.
This list includes:

• Peer Instruction
• Assessment and Feedback Tools
• Tools that Support Program Writing
• E-Books

Peer Instruction and Assessment and Feedback Tools
are methods instructors use to gauge students’
understanding and improve learning behavior. Tools
that Support Program Writing provide students with
hands-on learning experiences, while E-Books focus on
the instruction of course material in a traditional sense.

As the graph on Page 21 indicates, over 80% of
educators found all pedagogical interventions beneficial
except one: games for learning programming. This could
be due to the demographics of our survey respondents,
primarily being higher education instructors.

Beneficial	Pedagogical	
Interventions

1. Peer Instruction
2. Assessment and feedback tools
3. E-Books

Perception of Evidence-based Pedagogy
as	Beneficial	and	Challenging

4. Test-driven Development
5. Tools that support program writing
6. Code visualizers/simulators
7. Peer assessment or review
8. Pair Programming
9. Flipped classroom
10. Games for learning programming

Challenges
E-Books, the most widely adopted pedagogical
intervention, also ranks as the least difficult to
implement. The other two interventions that ranked
higher in benefits than in challenges are Tools that
support program writing and Peer Instruction.

Assessment and Feedback Tools are considered one
of the most beneficial tools we explored throughout
this research. It is also regarded as the most difficult
to implement.

Most Challenging Pedagogical
Interventions to Implement

1. Assessment and feedback tools
2. Test-driven Development
3. Games for learning programming
4. Code visualizers/simulators
5. Flipped classroom
6. Peer Instruction
7. Peer assessment or review
8. Pair Programming
9. Tools that support program writing
10. E-books

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 21

Is	This	Intervention	Beneficial?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Peer Instruction Assessment and
feedback tools

E-books Test-driven
Development

Tools that support
program writing

Code
viasualizers/simulators

Peer assessment or
review

Pair Programming Flipped classroom Games for learning
programming

Is this intervention beneficial?

Strongly Disagree Disagree Agree Strongly Agree

Strongly
Agree

Agree

Disagree

Strongly
Disagree

Is This Intervention Challenging?

Peer
Instruction

Assessment
and feedback

tools

E-books

Test-driven
Development

Tools
that support

program writing
Code

visualizers/
simulators

Peer
assessment

or review
Pair

Programming

Flipped
classroom

Games for
learning

programming

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Assessment and
feedback tools

Test-driven
Development

Games for learning
programming

Code
viasualizers/simulators

Flipped classroom Peer Instruction Peer assessment or
review

Pair Programming Tools that support
program writing

E-books

Is this intervention challenging?

Strongly Disagree Disagree Agree Strongly Agree
Assessment

and feedback
tools

Test-driven
Development

Games for
learning

programming

Code
visualizers /
simulators

Flipped
classroom

Peer
Instruction

Peer
assessment or

review

Pair
Programming

Tools that
support
program
writing E-Books

Strongly
Agree

Agree

Disagree

Strongly
Disagree

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 22

Rankings	of	benefits
1. Improved student understanding of content
2. Increased student engagement/interest
3. Increased student participation in class
4. Improved student grade performance
5. Students will be better prepared for their future

careers
6. More inclusive of underrepresented students
7. Improved student social skills
8. Increased teacher time savings
9. Greater material coverage

Potentially more notably than how beneficial educators
found these interventions (since 9/10 were rated as
beneficial by more than 80% of respondents), educators
varied more widely on which interventions were
challenging. Their top concern was once again student-
centered (i.e., students might not like it), followed by
more logistical challenges.

Rankings of Challenges
1. Students might not like it
2. Not enough time
3. Unfamiliar with resources/logistics needed
4. Lack of access to resources needed to try this
5. Slow down material coverage
6. Mis-match with students I teach
7. Incompatible classroom setup

Conclusion

8. Too large of a class size
9. Satisfied with how I teach currently
10. Not enough evidence it works
11. Too small of a class size
12. Discouraged by colleague or peer
13. Department sets curriculum
14. Interfere with tenure/promotion

These challenges also seem to carry more weight
than the benefits. Peer instruction, ranked by the most
instructors to be beneficial, also ranked as about
average in terms of how challenging instructors believed
it would be to implement—which could explain it being
found in less than half of CS classrooms despite the
rich research behind it.

We hope these findings will help researchers more
effectively market and disseminate their evidence-based
pedagogy by focusing on the benefits to students—
and possibly, more importantly, how to mitigate the
challenges of implementing the intervention.

Similarly, we hope this helps administrators and
educators identify promising evidence-based practices
to bring into their computing classrooms and illustrates
that while educators are motivated to do right by their
students, they need support from principles, chairs,
and deans. Administrators can offer educators support
by providing time and access to resources and training
opportunities to keep up with the ever-evolving field of
computer science education.

Computer Science educators are not necessarily developers—with over 20% never having worked in industry and
over 60% who primarily have taught. This could explain why assessment and feedback tools—which often require
large amounts of development—were ranked as the most challenging intervention to implement.

Based on the results of this survey, it is apparent that educators adopt practices that benefit students.
Consistently, educators ranked various elements of student learning outcomes as the most beneficial outcome
for adopting a new learning practice. The most important benefit found across the pedagogical interventions
was improved student understanding.

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 23

Barker, L., Hovey, C. L., & Gruning, J. (2015, February). What influences CS faculty to adopt teaching practices?.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 604-609).

Falkner, K., & Sheard, J. (2019). Pedagogic approaches. The Cambridge Handbook of Computing Education Research,
445-480.

Fincher, S. A., & Robins, A. V. (Eds.). (2019). The Cambridge handbook of computing education research.
Cambridge University Press.

Grover, S. (2020). Computer Science in K-12: An A-To-Z Handbook on Teaching Programming. Edfinity.

Guo, P. J. (2013, March). Online python tutor: embeddable web-based program visualization for cs education.
In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 579-584).

Guzdial, M. (2019, February). Computing education as a foundation for 21st century literacy. I
n Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 502-503).

Hovey, C. L., Barker, L., & Nagy, V. (2019, February). Survey Results on Why CS Faculty Adopt New Teaching Practices.
In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 483-489).

Jacobson, N., & Schaefer, S. K. (2008). Pair programming in CS1. ACM SIGCSE Bulletin, 40(2), 93-96.

Luxton-Reilly, A. (2009). A systematic review of tools that support peer assessment.
Computer Science Education, 19(4), 209-232. https://doi.org/10.1080/08993400903384844

Malmi, L., Utting, I., & Ko, A. J. (2019). Tools and environments.
The Cambridge Handbook of Computing Education Research, 639-662.

Patel, H., & Morreale, P. (2014). Education and learning: electronic books or traditional printed books?
Journal of Computing Sciences in Colleges, 29, 21-28.

Radermacher, A., & Walia, G. (2011). Investigating the effective implementation of pair programming.
In Proceeding of the 42nd ACM technical symposium on Computer science education - SIGCSE ‘11.

Radermacher, A., & Walia, G. (2013, March). Gaps between industry expectations and the abilities of graduates.
In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 525-530).

References

 | 2020 Survey of Computer Science Teaching: Pedagogical Practices in the U.S. 24

Check out our entire catalog of editable, interactive course resources!

Looking for something else?

Codio makes it easy to adopt the
pedagogical tools and practices
mentioned in this report.
Our fully-editable
interactive course
resources are
enhanced with auto-
graded assessments
for immediate
student feedback,
along with tools like
code visualizers to
maximize student
engagement.

Evaluate and edit any of our
course resources with a free
instructor account. Simply click
any of the resources on the
right to get started.

Evaluate Evaluate

Evaluate

Browse Catalog

Evaluate

https://codio.com/p/signup-course?sharedCode=DWG4-9PHU-2X4W
https://codio.com/p/signup-course?sharedCode=P4E2-MUV9-G3MV
https://codio.com/p/signup-course?sharedCode=YCLD-L7XW-3ZXK
https://codio.com/p/signup-course?sharedCode=42NJ-RXEA-YVN6
https://www.codio.com/resources

