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Abstract. As the third-place winning method for the MIDOG mito-
sis detection challenge, we created a cascade algorithm consisting of a
Mask-RCNN detector, followed by a classification ensemble consisting of
ResNet50 and DenseNet201 to refine detected mitotic candidates. The
MIDOG training data consists of 200 frames originating from four scan-
ners, three of which are annotated for mitotic instances with centroid
annotations. Our main algorithmic choices are as follows: first, to en-
hance the generalizability of our detector and classification networks, we
use a state-of-the-art Residual Cycle-GAN to transform each scanner do-
main to every other scanner domain. During training, we then randomly
load, for each image, one of the four domains. In this way, our networks
can learn from the fourth non-annotated scanner domain even if we don’t
have annotations for it. Second, for training the detector network, rather
than using centroid-based fixed-size bounding boxes, we create mitosis-
specific bounding boxes. We do this by manually annotating a small
selection of mitoses, training a Mask-RCNN on this small dataset, and
applying it to the rest of the data to obtain full annotations. We trained
the follow-up classification ensemble using only the challenge-provided
positive and hard-negative examples. On the preliminary and final test
set, the algorithm scores an F1 score of 0.7578 and 0.7361, respectively,
putting us as the preliminary second-place and final third-place team on
the leaderboard.

Keywords: MIDOG Challenge · Mitosis Detection · Instance Segmen-
tation.

1 Introduction

Mitosis detection is a highly challenging task in pathology due to the rarity of
the events and the highly variable morphological appearance of a cell under-
going mitosis - some being very clear and others highly ambiguous [17]. While
several mitosis detection challenges have been organized over the past years
(MITOS12 [13], AMIDA13 [14], MITOS14 [11], TUPAC16 [15]), none of them
focused on testing the effect of domain shift on the robustness of a mitosis detec-
tion method. The MIDOG challenge [1, 2] specifically addresses this by providing
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training data originating from four different scanners but making the unseen test
set (partially) consist of images that are not from these same scanners.

1.1 Dataset

Following the challenge description: the MIDOG training subset consists of 200
whole slide images (WSI) from human breast cancer tissue samples stained
with routine H&E dye. The samples were digitized with four slide scanning
systems: the Hamamatsu XR NanoZoomer 2.0, the Hamamatsu S360, the Ape-
rio ScanScope CS2 and the Leica GT450, resulting in 50 WSI per scanner. For
the slides of three scanners, a selected field of interest sized approximately 2mm2

(equivalent to ten high power fields) was annotated for mitotic figures and hard
negative look-alikes. These annotations were collected in a multi-expert blinded
set-up, but with the help of computer augmentation, similar to [4]. For the Leica
GT450, no annotations were available. The preliminary and final test set consist
of four (at the time undisclosed) scanners, only two of which were also part of the
training set, namely the Hamamatsu XR, Leica GT450, 3DHistech P1000 and
Hamamatsu RS. The preliminary test set consists of only five WSI from each for
four test scanners. This preliminary test set was used for evaluating the algo-
rithms prior to submission and publishing preliminary results on a leaderboard.
The final test set consists of 20 additional WSI from the same four test scan-
ners. The evaluation through a Docker-based submission system ensured that
the participants had no access to the (preliminary) test images during method
development.

2 Material and Methods

We base our method around a classic cascade approach to detect mitotic in-
stances in H&E-stained images. We first use a Mask-RCNN [8] to detect mitotic
candidates in an image. These candidates are then extracted as small patches
and given to a classifier ensemble of a ResNet50 [7] and DenseNet201 [9]. The
predictions are merged via weighted average and the final score is returned.

To improve the generalizability of the method - which is the main purpose
of the challenge - we used a Residual Cycle-GAN [3] to transform each image of
the training images into all other available domains. In this way, each mitotic
annotation is available in all 4 scanner domains. This differs from standard data
augmentation (color, hue, brightness, etc.), in that these are not random shifts
in appearance for the training process, but specifically towards domains that we
know are in the testing set. In Figure 1 we show a 4×4 grid of images of the 4
domains that we transformed to all other domains.

To improve the information present in the data for training a detector, we use
Mask-RCNN to create pixel-wise annotations for all annotated mitotic instances.
Since we know where all mitoses are, we use Inkscape to manually annotate the
first 100 or so, train a pretrained Mask-RCNN model on this small dataset, and



Title Suppressed Due to Excessive Length 3

apply it specifically around other known mitoses. We use test-time augmenta-
tion (8 rotations and flips) and average the predicted masks for each mitosis,
resulting in clean masks for most annotations. The remaining ”difficult” cases
were manually completed, providing us mitosis-specific bounding boxes for all
mitotic instances. The average bounding box diagonal in the dataset is 28.8±7.9
pixels, which is consistent with the MITOS12 dataset [10].

Fig. 1. Residual Cycle-GAN transformed patches. The diagonal are original patches,
off-diagonal patches are domain-transformed.
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2.1 Domain-Specific Residual Cycle-Gan Augmentation

For the Residual Cycle-GAN [3] we followed the reference model architecture
of two sets of generators and discriminators. The Residual Cycle-GAN follows
the same principle as a regular one, with the difference that the input image
has a direct skip connection with the generated output image. In this way, the
generator does not need to reconstruct the image from a set of filter outputs,
but only needs to add a ”residual”, i.e. a color change in the input image so
that it resembles a target domain. As it reduces the computational load on the
generator, this approach requires fewer data and converges more quickly.

We train six Cycle-GANs to obtain domain transformation functions from
all four scanner domains to each other. We train each cycle-GAN for 150000
iterations with generator learning rate 1e−4, discriminator learning rate 1e−2,
batch size 4, cycle-consistency loss weight 1 and adversarial loss weight 5. We
then use the trained generators of these models to create four complete ”scanner”
copies of the training data, where each copy corresponds to one of four scanners.
This means that each ”scanner” data set consists of 25% real data and 75%
GAN-transformed data, which will be equally sampled from during training. We
show an illustration of the 4 data sets in Figure 1.

2.2 Final Submission Network Training

We split our training data into 45 training slides and 5 validation slides per
scanner, ensuring that the validation set had both highly mitotic and non-mitotic
slides. The Torchvision implementation of Mask-RCNN with ResNet50 backbone
was pretrained on the public COCO2017 dataset, and both the ResNet50 and
DenseNet201 classifiers were pretrained on ImageNet. Note that this is the same
model architecture as we used for creating the mitosis masks, but now trained
on in For Mask-RCNN training, we used a patch size of 3000×3000 pixels and a
batch size of 1. We did not train on patches that did not contain any mitoses. We
found that using a larger patch size improves the validation performance, and did
not improve when adding negative patches. We augmented Mask-RCNN training
using skewing, 8 random flips/mirroring, and the domain-specific Cycle-Gan
augmentation stated before. We used SGD with a plateau-reduction learning
rate scheduler starting at 0.002 and reducing by a factor of 2 if the PR-AUC
does not improve after 5 epochs. We warmed up the optimizer during the first
epoch and only unfroze the last two convolutional blocks of the Mask-RCNN
network. We ran the algorithm until convergence after around 200 epochs.

The classification networks were only trained with the positive and negative
instances provided by the challenge organizers - we found that adding hard
negatives detected by the detector did not improve leaderboard performance.
We used a batch size of 32, and trained for 100 epochs, and kept the model
with the best F1 score. We used ADAM with standard parameters and a Cosine
annealing learning rate scheduler starting at 2×10−5 with a focal loss. For both
networks, we only unfroze the backbone after 5 epochs. We used a patch size
of 80×80, which we resized to 224×224 to conform with ImageNet pretraining.
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We used our GAN-based domain augmentation, together with H&E specific data
augmentation [6], with parameters n = 3, m = 7. The classification head consists
of 3 blocks of convolutions with Relu, batch normalization, and dropout set to
0.5, followed by a fully connected layer to the output.

For both the detector and classifiers, many variations of optimization pa-
rameters were tried and the model with the best PR-AUC on validation was
selected.

2.3 Ablation Study on Instance Segmentation and Domain-Specific
GAN Augmentation

The outcome of the challenge indicated that using label enhancement (i.e. adding
instance segmentation masks) for mitosis annotations was a winning ingredient
for all winning MIDOG approaches. For this reason, we conducted an ablation
study on the aforementioned training strategy to understand what aspect of our
algorithm most contributed to our success. Note that we perform this study on
the detection algorithm only, without the subsequent cascade classifiers.

To this end, we started our experiment with a basic Faster-RCNN net-
work [12] with ResNet50 as a backbone, trained using fixed-size bounding boxes
of size 50× 50 pixels, centered on the mitosis coordinate. We then gradually in-
creased the complexity of our strategy; first by introducing geometric augmenta-
tions e.g. rotations, flips, skewing. Then using the exact bounding box obtained
from borders of the mask annotations and finally, using a Mask-RCNN with
the actual mitosis masks and an offline GAN-based data augmentation method
where we transformed the data from each scanner to a different scanner.

3 Results

In Table 1 we show the results of our ablation study to find what worked best
for our mitosis detection algorithm. Note that ”F1 val” indicates F1 score on
Scanner 1,2 and 3 images, whereas ”F1 val S4” is the F1 score on the same
validation images but GAN-transformed to look like the scanner 4 domain.

In Table 2 we finally show a summary of our model’s scanner-wise perfor-
mance statistics on the MIDOG challenge test set and our validation set after
training. Note that NA means ”Not Available” as these scanners were not avail-
able in either the test or training set. We discuss our results in the next section.

For reference, our model’s aggregate validation PR-AUC was 0.8823 and F1
was 0.8287. On the preliminary test set our approach resulted in the second-
highest aggregate F1-score of 0.7577, resulting from a 0.7820 precision and a
0.7349 recall.

4 Discussion and Conclusion

From the MIDOG Challenge results the pattern emerged that the first, second,
and third place winners (us) all enhanced the mitosis annotations before using
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Table 1. Ablation study to find optimal mitosis detection strategy. From top to bot-
tom, the algorithm becomes increasingly complex. Describing columns from left to
right, first, there is experiment ID, which model we use (Fast-RCNN or Mask-RCNN),
whether we used fixed-size or adaptive bounding boxes (based on masks), whether we
use the mask itself (for Mask-RCNN), use of skew augmentation and use of domain-
specific GAN augmentation. Finally, we report F1 score statistics on the validation set
(F1 Val) and the F1 score on the GAN-transformed validation set to scanner 4 (F1 val
S4).

exp # model adapt. bboxes mask skew aug GAN aug F1 val F1 val S4

(1) Faster-RCNN × × × × 0.824 0.536
(2) Faster-RCNN × × ✓ × 0.835 0.425

(3) Faster-RCNN ✓ × ✓ × 0.818 0.493†

(4) Faster-RCNN ✓ × ✓ ✓ 0.823 0.815∗

(5) Mask-RCNN ✓ ✓ ✓ × 0.812 0.705†

(6) Mask-RCNN ✓ ✓ ✓ ✓ 0.813 0.812∗

Table 2. Precision, recall and F1 scores for all scanners available in the MIDOG train
and test set. NA indicates ”Not Available”, as these scanners were either not available
in the test or train set. Note that the validation scores for the Leica GT450 scanner
have an asterisk, as this scanner was not annotated in the training data, but we used
our GAN approach to evaluate the annotated validation set transformed to the Leica
GT450 domain.

Test Validation

Scanner Precision Recall F1 Precision Recall F1

Hamamatsu XR 0.669 0.572 0.617 0.618 0.871 0.723

Leica GT450 0.693 0.690 0.692 0.798* 0.825* 0.812*

3DHistech P1000 0.851 0.696 0.766 NA NA NA

Hamamatsu RS 0.669 0.572 0.617 NA NA NA

Hamamatsu S360 NA NA NA 0.775 0.968 0.861

Aperio CS2 NA NA NA 0.860 0.804 0.831

some detection algorithm. For this reason, we studied the effect on domain gen-
eralizability of adding either instance segmentation for the annotated mitoses
or domain-specific GAN augmentation, shown in Table 1. As the MIDOG data
does not have a separate test set available to evaluate generalizability for dif-
ferent algorithm variants, we used our GAN domain augmentation to transform
our validation set to resemble the non-annotated scanner 4 (Leica GT450). We
observe that the ”F1 val” score is similar for all experiments regardless of model
or augmentation strategy, indicating that for in-training domains there is no
significant effect of adding instance masks or domain-augmentation. However,
for ”F1 val S4” we found that just adding the instance masks for scanners 1-3
already improved generalizability to simulated scanner 4, going from F1 score
0.493 (Exp 3) to 0.705 (Exp 5). Moreover, we see that adding GAN augmenta-
tion improves F1 score for F-RCNN, going from F1 score 0.493 (Exp 3) to 0.815
(Exp 4). The same observation is true for Mask-RCNN, going from F1 score
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0.705 (Exp 5) to 0.813 (Exp 6). We note that adding the GAN augmentation
seems to obviate the benefit of adding masks (F-RCNN versus mask-RCNN),
but we chose to submit the Mask-RCNN approach nonetheless. We note, how-
ever, that we don’t have access to the test set for this ablation study so don’t
know if our findings on the simulated validation set generalize to the test set.

Finally, we compare the performance of our algorithm between the train,
validation, and test set in Table 2. As is expected, our validation scores are
always higher than the test scores. Interestingly enough our algorithm generalizes
better to an unseen scanner (3DHistech) than a scanner that was actually in
the training dataset (Hamamatsu XR), though we note that this scanner also
performs worst among the four train scanners in validation. The Leica GT450
scanner, for which we explicitly used our GAN domain augmentation during
training, performs second-best in test, suggesting our approach indeed enhanced
the model’s generalizing properties to this domain.

On the preliminary test set, it was interesting that the MIDOG reference
approach [16], which used a RetinaNet with domain adversarial training, was
already among the top competitors on the leaderboard. The computational ben-
efit of domain adversarial training over domain-specific GAN augmentation is
that it is not necessary to train a cycle-GAN or transform any of the training
images. On the other hand, the GAN augmentation can be used for any network
architecture without having to choose where to plug in the domain adversarial
loss during training - something that the reference approach had to experiment
with. It is a subject of future work which of these approaches provides the best
domain generalizability.

As for the training of the Residual Cycle-GAN, we note that visually the
results illustrated in Figure 1 seem convincing, but the color transformation is
not always completely consistent between different frames. As is typical of GANs,
it is hard to know exactly when to stop training, and it is hard to assess how
these color variations impact the final mitosis detection performance.

In conclusion, while the winning approaches in the MIDOG challenge were
different, it seems that injecting more information into the mitosis detection
problem improves the final detection performance. It would be interesting to
see how using self-supervised contrastive learning as pretraining [5], instead of
ImageNet pretraining, could further improve the mitosis detection performance
of any approach.

References

[1] Marc Aubreville et al. “MItosis DOmain Generalization Challenge (MI-
DOG)”. In: 24th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) (2021). doi: 10.5281/
zenodo.4573978.

[2] Marc Aubreville et al. “Quantifying the Scanner-Induced Domain Gap
in Mitosis Detection”. In: Medical Imaging with Deep Learning (MIDL)
(2021).



8 Fick et al.

[3] Thomas de Bel et al. “Residual cyclegan for robust domain transformation
of histopathological tissue slides”. In: Medical Image Analysis 70 (2021),
p. 102004.

[4] Christof A Bertram et al. “Are pathologist-defined labels reproducible?
Comparison of the TUPAC16 mitotic figure dataset with an alternative set
of labels”. In: Interpretable and Annotation-Efficient Learning for Medical
Image Computing. Springer, 2020, pp. 204–213.

[5] Ozan Ciga, Tony Xu, and Anne Louise Martel. “Self supervised contrastive
learning for digital histopathology”. In: Machine Learning with Applica-
tions (2021), p. 100198.

[6] Khrystyna Faryna, Jeroen van der Laak, and Geert Litjens. “Tailoring au-
tomated data augmentation to H&E-stained histopathology”. In: Medical
Imaging with Deep Learning. 2021.

[7] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 770–778.

[8] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE ICCV. 2017,
pp. 2961–2969.

[9] Gao Huang et al. “Densely connected convolutional networks”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700–4708.

[10] Tasleem Kausar et al. “SmallMitosis: Small Size Mitotic Cells Detection
in Breast Histopathology Images”. In: IEEE Access 9 (2020), pp. 905–922.

[11] MITOS14 Challenge. 2014. url: https://mitos- atypia- 14.grand-
challenge.org/.

[12] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

[13] Ludovic Roux et al. “Mitosis detection in breast cancer histological images
An ICPR 2012 contest”. In: Journal of pathology informatics 4 (2013).

[14] Mitko Veta et al. “Assessment of algorithms for mitosis detection in breast
cancer histopathology images”. In: Medical image analysis 20.1 (2015),
pp. 237–248.

[15] Mitko Veta et al. “Predicting breast tumor proliferation from whole-slide
images: the TUPAC16 challenge”. In: Medical image analysis 54 (2019),
pp. 111–121.

[16] Frauke Wilm, Katharina Breininger, and Marc Aubreville. “Domain Ad-
versarial RetinaNet as a Reference Algorithm for the MItosis DOmain
Generalization (MIDOG) Challenge”. In: Biomedical Image Registration,
Domain Generalisation and Out-of-Distribution Analysis, MICCAI 2021
Challenges L2R, MIDOG and MOOD (2021).

[17] Frauke Wilm et al. “Influence of Inter-Annotator Variability on Automatic
Mitotic Figure Assessment”. In: Bildverarbeitung für die Medizin 2021.
Springer, 2021, pp. 241–246.


