

April 2020

Comparing the efficiency of LwM2M and MQTT:
hands-on test results of two technology clients
on a typical IoT device

2

Table of Contents ... 2

Executive Summary ... 3

Introduction ... 5

Methodology and Technical Specifications .. 6

Device Clients ... 7

Security .. 8

Packet Capture ... 8

Data Observations .. 8

Test Findings .. 9

Packet analysis: initial connection .. 10

Packet analysis: steady-state without observation reporting .. 12

Packet Analysis: observation reporting at 30-second reporting intervals... 14

Packet analysis: single platform-to-device message .. 17

Packet analysis: OTA firmware update ... 19

Power consumption: idle, 1, 30, and 60-second observation reporting intervals .. 22

Qualitative evaluation: business comparison .. 24

Qualitative evaluation: technical comparison ... 24

Areas of Future Suggested Research .. 26

Conclusions .. 27

About Project Sponsors.. 28

About AT&T Communications .. 28

About AVSystem .. 28

About MachNation ... 28

Table of Contents

3

When enterprises and their developers begin to select technology components for an Internet of Things (IoT)
deployment, they are confronted with many choices. These choices span the IoT technology stack including
devices, protocols, communication services, communications management, various types of IoT platforms, and
application development.

One of the first choices that developers make is selecting software and protocols that allow devices to
communicate to IoT platforms and, in some cases, allow cloud platforms to manage IoT devices. Two of the most
common protocols to perform these tasks are Lightweight Machine-to-Machine (LwM2M) and Message Queuing
Telemetry Transport (MQTT).

Today, MQTT is the communications protocol chosen by many enterprises deploying IoT solutions. There is a
fairly well-developed ecosystem of vendors that support and market MQTT, offer productized MQTT clients, and
supply documentation to support an enterprise’s MQTT implementation.

LwM2M, by contrast, is a newer technology solution offering a communications and device management
protocol. While the potential exists for LwM2M to be heavily adopted by enterprise developers, today the
LwM2M ecosystem is not as well developed as the ecosystem for MQTT and it remains more difficult for an
enterprise developer to rapidly design an IoT solution around LwM2M compared to MQTT1. This situation must be
changed if LwM2M and supporting vendors wish to incent developers to design more IoT solutions using LwM2M.

By choosing the right technology protocol, IoT developers will help enterprises bring their IoT solutions to market
faster; save ongoing development, management, and operations costs including communications services
expenses; and future-proof their IoT solutions.

In order to help enterprises and developers understand the differences between the Open Mobile Alliance (OMA)
LwM2M protocol and the more traditional MQTT messaging protocol, MachNation designed and completed a set
of tests on a typical IoT device using an MQTT client and a LwM2M client. With technology support from AT&T
and AVSystem, MachNation strove to create a set of tests that simulates a meaningful, real-world IoT
deployment.

Based on the testing, MachNation arrived at a set of conclusions (see Figure 1). In particular,

LwM2M shows efficiency and performance benefits over MQTT in the following:

 Less data transfer during the initial device-to-platform connection and after a device reboot

 Less data transfer during the ongoing steady state of a device connection

 Less data transfer during device observations at 2 updates per minute

 Less data transfer during a single platform-to-device message push

 Less bursty, allowing better network planning, improved efficiency, and possibly lower operations costs
associated with communication services in constrained networks

 Less power consumption than a similarly-equipped MQTT device irrespective of update interval,
although it is possible that such differences stem from the SDK language rather than the protocol used

 Yields important, long-term technical advantages, but more forethought required for implementation
during the design and development process.

MQTT shows efficiency and performance benefits over LwM2M in the following:

 Less data transfer during an over-the-air (OTA) firmware update

 Easier and faster to deploy on an IoT device, though leaves unresolved many important device-
integration questions during initial deployment and rollout, possibly creating unknown, future costs for
enterprises.

1 The relative difficulties in implementing LwM2M could arise from technology, documentation, or vendor-support issues.
However, it is quite possible that as LwM2M matures, these deficiencies will be addressed.

Executive Summary

4

FIGURE 1: SUMMARY OF EFFICIENCY AND PERFORMANCE SCORES FOR LWM2M AND MQTT CLIENTS ON A TYPICAL IOT DEVICE
[SOURCE: MACHNATION, 20202345]

Based on the testing completed, MachNation finds that a LwM2M client is preferable to an MQTT client for
devices that:

 Are designed for long battery life, including those that support IoT applications where device
replacement is difficult and costly

 Operate on a constrained network (e.g., LTE Cat-M1 and NB-IoT) or where network traffic is metered

 Remain in a dormant state relatively often.

MachNation also recommends that embedded developers implementing a LwM2M-powered solution seek a fairly
productized (rather than open source) LwM2M client upon which to build. Vendors that offer productized clients
will generally offer technical support to aid enterprises in deployment. This can lower development time and
reduce costs. The LwM2M specification provides great flexibility, but requires more forethought in the design and
customization of the client compared to MQTT.

2 Initial connection refers to the initial registration of an IoT device to an IoT platform, as well as the connection made after a
device reboot.
3 It can be argued that the 4% efficiency of MQTT over LwM2M is insignificant. MachNation supports the results of this

whitepaper based on the technology selected for testing as shown on Figure 3. In addition, it is worth mentioning that an
interrupted OTA download over the MQTT client used in this study would require re-transmission of an entire firmware image,
whereas the out-of-the-box LwM2M client used in this study supports resumption of the download from point of interruption.
This could have significant implications on download time and amount of data transferred in favor of LwM2M. MachNation
recommends additional testing of OTA updates using different clients and devices.
4 MachNation did not test longer intervals (e.g., 1 update per day) for the power consumption test. It is possible that test

results of longer intervals would show similar findings to the tests of shorter intervals.
5 While there are only a few reference implementations of LwM2M v1.0 on GitHub, there are many chipset vendors and
module manufacturers that support LwM2M for their own products. See footnote 18 for more information.

5

Enterprises continue to deploy IoT solutions for a variety of solutions. Some of these solutions, like connected
robotics, autonomous driving, drone management, and more, produce tremendous amounts of data, rely on
streaming analytics services, and require solutions that both monitor and control the IoT asset. Other solutions,
like smart parking, small asset tracking, cold-chain management, and others, produce small quantities of data,
rely on analytics from a data historian, and require solutions that primarily accomplish condition monitoring of IoT
assets.

MachNation has spoken with many enterprises that are debating the use of LwM2M and MQTT for their IoT
deployments. MachNation discovered three common themes. First, these enterprises do not know which protocol
will yield them more device efficiency and performance benefits. Second, enterprises confirmed the lack of
rigorous comparison between the two protocols to help them select the right one for their IoT applications. Third,
enterprises recognize that the specific requirements of an IoT solution should dictate the selection of device
management and communications protocol.

Lightweight M2M (LwM2M) is a protocol from the Open Mobile Alliance6 for IoT device management. It is
designed for remote management of M2M devices and related service enablement, including real time telemetry
and command and control; features a modern architectural design based on REST; defines an extensible resource
and data model often referred to as the Smart Objects model; and builds on a secure data transfer standard called
the Constrained Application Protocol (CoAP).7 LwM2M comes with a set of standardized management objects as
well as many others that can be added as standard objects based on the IPSO Alliance’s IPSO Smart Object
Registry.8 Additionally, LwM2M supports a variety of data encoding formats for device-to-platform and platform-
to-device communication, including binary type-length-value (TLV), JavaScript Object Notation (JSON), and
Concise Binary Object Representation (CBOR).

MQTT is a machine-to-machine (M2M) and IoT connectivity protocol. It was designed as an extremely lightweight
publish/subscribe messaging transport to aid in efficient, standardized message delivery.9 Although the MQTT
protocol itself defines no specific standard for data encoding, most implementations leverage JSON for device-to-
platform and platform-to-device communication. While this is not a technical limitation of the protocol itself and
other encodings such as CBOR or TLV are possible, they are used much less regularly in practice largely due to
lack of platform support. Additionally, platforms such as AWS IoT and Azure IoT require telemetry messages to be
in a JSON format to support many typical out-of-the-box functionalities such as digital twins or pre-integrated
event processing. The use of non-JSON encoding schemas typically requires additional data-translation solutions
to be implemented before the inbound messages can be stored or processed.

Today, MQTT is the de facto communications protocol used by enterprises deploying IoT solutions. While these
enterprises might investigate other protocols during creation of a proof of concept (POC), often they will select
MQTT due to the relatively strong ecosystem support that has existed for many years around MQTT. For
example, hyper-scale cloud vendors like Amazon, Google, and Microsoft, support and market MQTT, offer
productized MQTT clients, and supply documentation to support an enterprise’s MQTT implementation. These
vendors do not support LwM2M as of 1Q2020.

Much confusion exists—driven by lack of replicable, quantitative data—about the relative efficiencies and
performance of LwM2M and MQTT. So with technology support from AT&T and AVSystem, MachNation
undertook an in-lab experiment to quantify and compare the benefits of LwM2M and MQTT clients on a typical
IoT device.

6 OMA is an organization supported by AT&T, other wireless carriers, device manufacturers, and IoT platform vendors. These
parties work together to ensure solid and efficient clients are built and certified for the industry.
7 For more information, please see https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/.
Also please note that Datagram Transport Layer Security (DTLS) wrapping of CoAP creates the security element of the
protocol.
8 Details can be found at the OMA LwM2M Object and Resource Registry at
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
9 For more information, please see http://mqtt.org/

Introduction

https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://mqtt.org/

6

MachNation began this hands-on benchmarking study of LwM2M and MQTT in 2Q2019. The study was
completed in 4Q2019 after 7 months of test design, implementation, and testing. The testing was performed at
MachNation’s USA test lab in metropolitan Boston.

MachNation completed the following steps for testing:

1. Installed a LwM2M Anjay-based client and Amazon AWS IoT MQTT client on a Raspberry Pi 4 Model B
2. Designed and conducted a set of efficiency and performance tests under multiple test scenarios
3. Ingested, normalized, and aggregated raw test data
4. Drafted the results and implications in this whitepaper

MachNation supplied testing services including device set-up, platform set-up, client implementation, metric
collection, and analysis; was responsible for drafting this whitepaper; and supplied test equipment as needed for
this analysis. AT&T and AVSystem, as study sponsors, supplied technology and technology advice to support
testing. Both AT&T and AVSystem reviewed drafts of this whitepaper and provided edits and guidance.

MachNation chose tests that would provide meaningful, real-world insights for enterprises making the selection
of IoT protocols. While there are many tests that could be helpful, MachNation chose a subset of tests that
represent typical activities of IoT devices and platforms like initial connection between an IoT device and
platform, pushing a firmware update to a device, and streaming data every 30 seconds from a device to a
platform. See Figure 2 summarizing the chosen tests and primary reason for inclusion.

FIGURE 2: IOT PROTOCOL TESTS AND PRIMARY REASON FOR INCLUSION [SOURCE: MACHNATION, 2020]

Methodology and Technical Specifications

7

MachNation chose a variety of technology to conduct testing of LwM2M and MQTT clients. MachNation sought
to choose industry-available technology that would be accessible to a typical enterprise developer seeking to
create an IoT solution for a POC. See Figure 3 summarizing the technology used for testing.

FIGURE 3: TECHNOLOGY USED FOR LWM2M AND MQTT TESTING [SOURCE: MACHNATION, 2020]

MachNation and the sponsors sought to create a baseline comparison to provide a fair, quantitative, and test-
based assessment of the two protocols. The goal was to design a comparison that would emulate, as much as
possible, a true-to-life deployment of an IoT solution using LwM2M and MQTT that would neither benefit nor
penalize either protocol based on the test design methodology. Below we discuss some additional test design
choices.

Device Clients

MachNation chose comparable IoT device clients for testing. MachNation chose10 the Amazon AWS IoT SDK for
Python v1.4.7 for the MQTT tests. MachNation programmed the MQTT client to use AWS IoT’s native “jobs”
service for managing firmware over-the-air operations, as well as monitoring a specific MQTT topic to configure
the reporting frequency of the northbound data observations (i.e., northbound messages). Observation updates11
were performed using the native AWS IoT device shadow functionality12, as this is the reference implementation

10 Choice of IoT technology and vendors’ particular implementation of that technology can have meaningful impacts on test
results. In this study, MachNation only tested vendors’ technology as shown on Figure 3. MachNation did not test technology
stacks, such as LTE-M or NB-IoT, which may or may not provide different test results. In addition, MachNation chose an Anjay-
based LwM2M and an Amazon AWS MQTT client as shown on Figure 3. A discussion of additional areas of testing exploration
is covered in the whitepaper section entitled, “Areas of future suggested research”.
11 MQTT does not use the concept of observe or notify, only publish or subscribe. However, AWS' IoT implementation, when
leveraging its Device Shadow Service, does use the observe or notify concept. It is roughly analogous to observation reporting
for LwM2M.
12 The concept of a device shadow is roughly analogous to the concept of a device twin or digital twin. Regardless of the
terminology, using a device shadow or digital twin is the most common approach to send telemetry into a managed pipeline
within the northbound platform. Some customers may choose to simply leverage the message broker directly, manually
consume broker-ingested messages, and store/process them as needed. However, for most IoT platform out-of-the-box

8

for managing device-to-platform observation messages and will likely be the first point of implementation for
many typical customer use cases. JSON was leveraged as the encoding schema for messaging.

MachNation chose AVSystem Anjay Library v.1.16 closed-source variant for the LwM2M scenarios without
bootstrap enabled. This client uses version 1.1 of the LwM2M protocol. MachNation, with assistance from
AVSystem, programmed the LwM2M client to use the default “firmware update” object (/5/) to execute firmware
update operations and used native LwM2M features (pmax/pmin) to configure the reporting frequency of the
northbound data observations. Binary TLV was leveraged as the encoding schema for messaging.

Security

To ensure a typically designed IoT implementation, MachNation chose TLS with X.509 certificates for MQTT
connectivity with the AWS IoT endpoint. DTLS with certificate-based authentication was leveraged for LwM2M
connectivity over CoAP/UDP with the AVSystem Coiote IoT Device Management platform, with the exception of
one firmware OTA test that leveraged HTTPS for binary delivery from the platform to the device.

Packet Capture

During the testing process packets were captured using tcpdump on a pfSense router upstream of the test device.
Packets were filtered to only count UDP or TCP packets carrying traffic to and from the device and platform. DNS
lookups, ARP requests, and other network traffic were not included in the packet or byte counts. The MQTT client
used MQTT/TCP for observations and commands while leveraging HTTPS for firmware file retrieval. The LwM2M
client communicated only over CoAP/UDP throughout the tests.

Data Observations

MachNation configured both IoT device clients to send a four-parameter message that included a string, an
integer, a float, and a Boolean observation as a single object and message.

Invariably, in any lab-based comparison, it is impossible to create a completely apples-to-apples comparison.
There are always decisions that testers need to make that might influence the outcome of the analysis.
MachNation will continue to review its comparison and modify assumptions to better reflect real-world IoT
deployment use cases.

functionality, such as device state monitoring, accessing the on-platform rules engines, on-platform data transformation,
leveraging the automatic data historian, and others, a developer must leverage a platform’s device shadow or digital twin
model. Additionally, the device shadow is the reference implementation method for AWS IoT, as provided in its developer
documentation.

9

MachNation completed a set of hands-on tests comparing the efficiency and performance metrics on a typical IoT
device using LwM2M and MQTT. In this section, we will

 Define each test

 Describe why we included the test

 Present the efficiency and performance data

 Summarize the implications of the findings.

See Figure 4 for the list of tests conducted by MachNation as part of this study.

FIGURE 4: LIST OF TESTS CONDUCTED BY MACHNATION [SOURCE: MACHNATION, 2020]

Test Findings

10

Packet analysis: initial connection13

LwM2M is 72% more efficient than MQTT at delivering data during the initial connection between IoT device
and platform.

In this scenario, MachNation tested the delivery of packets during the initial connection between the IoT device
and platform. For MQTT, we tested the initial connection from the device to the AWS IoT MQTT broker, including
a single shadow update upon connection. For LwM2M, we tested an initial non-bootstrap connection of the
device to the AVSystem Coiote LwM2M endpoint, including a variety of LwM2M messages, such as optimized on-
device object discovery and an initial reporting of the custom observation object. Overall, the packet capture
window was 2 minutes.

MachNation chose to include a packet analysis for the initial connection to highlight the impact on an IoT network
and device and to illustrate the differences in typical implementations for a device onboarding event (i.e., device
registration to an IoT platform or device reboot) in MQTT- and LwM2M-based solutions.

Overall, MachNation found that LwM2M is 72% more efficient at delivering data during the initial connection
between IoT device and platform (or after device reboot) than MQTT. During the initial connection, LwM2M and
MQTT required 4213 bytes and 14907 bytes, respectively, with the average LwM2M packet size being 9% smaller
than the average MQTT packet size.

Below we present the data from the initial connection scenario.

FIGURE 5-1: TOTAL BYTES TRANSFERRED DURING INITIAL

DEVICE CONNECTION [SOURCE: MACHNATION, 2020]

As shown on Figure 5-1, during the initial connection
between IoT device and platform, LwM2M required
72% fewer bytes of data than MQTT. Approximately
60% of the MQTT data and 33% of the LwM2M data
traveled from platform to device, illustrating the
relative inefficiency of JSON messages over MQTT
compared to binary TLV messages over LwM2M
during registration to an IoT platform. The
remaining 40% and 67% for MQTT and LwM2M,
respectively, were data traffic from the device to the
platform.

FIGURE 5-2: TOTAL PACKETS TRANSFERRED DURING INITIAL

DEVICE CONNECTION [SOURCE: MACHNATION, 2020]

As shown on Figure 5-2, during the initial connection
between IoT device and platform, LwM2M delivered
74% fewer packets of data than MQTT, supporting
the overall efficiency of LwM2M. Of additional note,
the LwM2M client transmitted more parameters to
the platform during the initial connection process
compared to the MQTT client, but nonetheless
achieved this with fewer packets and fewer bytes.

13 Initial connection refers to the initial registration of an IoT device to an IoT platform, as well as the connection made after a
device reboot.

11

FIGURE 5-3: BYTES AND PACKETS TRANSFERRED DURING INITIAL DEVICE CONNECTION OVER TIME [SOURCE: MACHNATION,

2020]

The fact that fewer packets were sent during the initial connection phase is supplemented by data from Figure 5-3
showing that MQTT data tends to be more bursty (i.e., transmitting a higher total throughput of messages in a
given time window) during initial connection than LwM2M. This implies that network planning during the initial
connection phase is important in cases where large numbers of MQTT devices are brought on-line simultaneously.
LwM2M does not exhibit this type of bursty packet behavior, likely leading to less complex scaling challenges
during large-scale onboarding of IoT devices. The large MQTT peaks are likely caused by the AWS Device Shadow
Service updating the platform with data from the device. It is possible that other MQTT clients would not exhibit
the same type of peaks, although MachNation did not test non-AWS MQTT clients as part of this study.

FIGURE 5-4: HISTOGRAM OF PACKET LENGTHS DURING

INITIAL DEVICE CONNECTION
[SOURCE: MACHNATION, 2020]

As shown on Figure 5-4, during the initial connection
between IoT device and platform, LwM2M packet
lengths tended to be less variable than MQTT
packet lengths for the two chosen clients for
testing.14 The average LwM2M package length was
295 bytes, 9% less than the average MQTT packet
length of 324 bytes. In particular, LwM2M may be
the preferential choice for networks with
constrained message transmission unit (MTU) sizes.

14 Theoretically, MQTT message size can be constrained
through changes during device implementation, however,
MachNation believes this would be a bit non-standard. We
believe a developer would not make these changes unless

there is a very specific need. MachNation conducted
testing as these two clients would be used in real-world
environments, therefore, we believe the conclusions
drawn in this section are reasonable.

12

Packet analysis: steady state without observation reporting

LwM2M devices transmit 31% less data in a steady state than MQTT devices.

In this scenario, MachNation tested the packet delivery during a steady-state connection without observation
reporting between an IoT device and platform. For MQTT, we tested the AWS IoT SDK device client connected to
the AWS IoT broker with no explicit messages or observations sent across the connection. For LwM2M, we tested
the Anjay client connected to the AVSystem Coiote IoT Device Management platform with no observations or
reporting intervals set in the LwM2M client or platform. Overall, the packet capture window was 10 minutes.

MachNation chose to include a packet analysis for the steady state, because many IoT devices, especially those
collecting data based on a specific triggering parameter or rule, remain in a state where the device is mostly
listening for events or monitoring behavior without actively reporting any observations. Understanding the
transmittal of data and packets (sometimes called chattiness) during these times helps customers estimate
ongoing networking costs and allows network planners to design appropriate IoT networks.

Overall, MachNation found that a LwM2M delivered 179 bytes in a total of 2 packets and MQTT delivered 260
bytes in a total of 3 packets. The MQTT heartbeats were a result of the AWS IoT SDK leveraging the device
shadow functionality, as would be typical for many customers implementing AWS IoT, although this is not easily
configured.15 In contrast, the LwM2M client has an operator-configurable “heartbeat” period, which was set to 10-
minutes, resulting in a single heartbeat capture during our test.

Below we present the data from the steady-state scenario.

FIGURE 6-1: TOTAL BYTES TRANSFERRED DURING DEVICE

STEADY-STATE [SOURCE: MACHNATION, 2020]

As shown on Figure 6-1, the LwM2M client delivered
179 bytes of data, whereas the MQTT client
delivered 260 bytes during the steady-state
scenario. Approximately 63% of the MQTT and 54%
of the LwM2M data traveled from device to
platform, showing that the majority of steady-state
communications was initiated by the device
verifying communication with the platform.

FIGURE 6-2: TOTAL PACKETS TRANSFERRED DURING

DEVICE STEADY-STATE [SOURCE: MACHNATION, 2020]

As shown on Figure 6-2, during the steady-state of
device-to-platform communication, LwM2M
delivered 2 packets of data, whereas MQTT
delivered 3.

15 Heartbeats are typical to nearly all IP-connected IoT devices, but may vary by vendor implementation. MachNation did not
test other vendors’ IoT implementations, only the listed vendors in this particular whitepaper. MachNation did not test
technology stacks, such as LTE-M or NB-IoT, which may or may not provide different test results. Discussion of follow-on
testing is covered in the whitepaper section entitled, “Areas of future suggested research”.

13

FIGURE 6-3: BYTES AND PACKETS TRANSFERRED DURING DEVICE STEADY-STATE OVER TIME
[SOURCE: MACHNATION, 2020]

As shown on Figure 6-3, interestingly the MQTT device delivered all data in the last 100 milliseconds of the
capture window, indicating the heartbeat interval appears to be around 10 minutes. As we were able to manually
define the LwM2M “heartbeat” interval, we were able to offset the timing of the test to capture the message
roughly during the middle of the test window.

FIGURE 6-4: HISTOGRAM OF PACKET LENGTHS DURING

DEVICE STEADY-STATE [SOURCE: MACHNATION, 2020]

As shown on Figure 6-4, during the steady-state
scenario, the average MQTT and LwM2M package
lengths were 100 bytes and 120 bytes, respectively.
While the average LwM2M packet length was
greater than the MQTT packet length, the number
of total packets was less for LwM2M, as has already
been described.

14

Packet Analysis: observation reporting at 30-second reporting intervals

LwM2M is 88% more efficient than MQTT at delivering data during observation reporting at 30-second
intervals.

In this scenario, MachNation tested the delivery of packets with observation reporting at 30-second intervals.
MachNation chose a 30-second interval as indicative of a realistic, real-world solution. The actual interval length
(30-seconds) is not overly relevant: MachNation believes that other interval lengths would yield the same results
in terms of the percentage efficiency of the LwM2M client over the MQTT client. For purposes of this whitepaper,
MachNation only tested a 30-second interval. Furthermore, most observation reporting windows are time-
bounded in one way or another. Very few real-world IoT implementations have no heartbeat (minimum reporting
interval) and rely solely on device-initiated observations. Therefore, MachNation chose to include this scenario as
representative of a real-world IoT use case.

For MQTT, we tested the AWS client on the AWS IoT platform configured to send a device shadow update of one
string, one floating-point number, one integer, and one Boolean every 30 seconds (i.e., 2 observations per
minute). For LwM2M, we tested the Anjay client connected to the Coiote IoT Device Management platform with
a reporting interval of 30 seconds for a single custom LwM2M object containing the same set of data as the MQTT
observations. Overall, the packet capture window was 5 minutes, yielding 10 observations each captured for
LwM2M and MQTT.

MachNation chose to include this packet analysis to simulate a device sending data at regular intervals as is
customary for many IoT use cases involving simple sensors.

Overall, MachNation found that LwM2M is 88% more efficient than MQTT at delivering data during observation
reporting at 30-second intervals. During the test, LwM2M and MQTT delivered 15394 and 1820 bytes of data,
respectively, with the average LwM2M packet size being 64% smaller than the average MQTT packet size.

Below we present the data from the 30-second interval observation reporting scenario.

FIGURE 7-1: TOTAL BYTES TRANSFERRED DURING TESTS

FOR 30-SECOND REPORTING INTERVALS
[SOURCE: MACHNATION, 2020]

As shown on Figure 7-1, during observation
reporting at 30-second intervals, LwM2M delivered
88% fewer bytes of data than MQTT. 47% of the
MQTT data and 0% of the LwM2M data, traveled
from platform to device, while 53% of the MQTT
data and 100% of the LwM2M data traveled from
IoT device to the platform.

15

FIGURE 7-2: TOTAL PACKETS TRANSFERRED DURING TESTS

FOR 30-SECOND REPORTING INTERVALS
[SOURCE: MACHNATION, 2020]

As shown on Figure 7-2, during observation
reporting at 30-second intervals, LwM2M delivered
67% fewer packets of data than MQTT.
Furthermore, all of the LwM2M packets were sent
from IoT device to platform, whereas 67% of the
MQTT packets were sent from device to platform. In
particular, we note the additional overhead of the
MQTT protocol when used with AWS IoT’s Device
Shadow Service, requiring an acknowledgement
message for each observation sent to the platform
from the device. Different results are possible had
MachNation chosen other reference
implementations.

FIGURE 7-3: MQTT AND LWM2M PACKETS AND LENGTHS DURING A SINGLE OBSERVATION REPORT
[SOURCE: MACHNATION, 2020]

In Figure 7-3, we present a more detailed look into the total number of packets and bytes, respectively, sent and
received by both the MQTT and LwM2M clients during a single observation report to the platform from the
device. As previously described, we can clearly see the additional overhead of the AWS IoT device shadow service,
where the device sends the shadow update to the platform delivering approximately 750 bytes, the platform
confirms the shadow update delivering approximately 720 bytes, and the device confirms update of the shadow
on the platform delivering approximately 66 bytes. As previously mentioned, it is possible that non-AWS MQTT
clients would exhibit different amounts of data delivery, although MachNation did not test other MQTT clients as
part of this study.

In the LwM2M-equipped device only a single packet of 182 bytes is sent with a consistent packet length
throughout the test.

16

FIGURE 7-4: BYTES AND PACKETS TRANSFERRED WITH A 30-SECOND REPORTING INTERVAL OVER TIME
[SOURCE: MACHNATION, 2020]

As shown on Figure 7-4 and supporting the detailed analysis on Figure 7-3, both LwM2M and MQTT deliver a
consistent number and size of packets every 30 seconds. Each observation yields 3 MQTT packets of 1536 bytes
and 1 LwM2M packet of 182 bytes. Overall, LwM2M is 88% more efficient in terms of packet size and 67% more
efficient in terms of the number of packets sent per observation, irrespective of the reporting interval chosen.

FIGURE 7-5: HISTOGRAM OF PACKET LENGTHS DURING

TESTS FOR 30-SECOND REPORTING INTERVALS
[SOURCE: MACHNATION, 2020]

As shown on Figure 7-5, during the 30-second
observation reporting scenario, LwM2M packet
lengths were highly consistent whereas MQTT
packet lengths varied16 based on whether data were
going from device to platform or vice versa. Overall,
the average packet length for LwM2M was 88% less
than for MQTT during the 30-second observation
reporting scenario.

16 The variance in packet lengths is specific to the vendor’s
(AWS’) implementation of MQTT. Other vendors’
implementations might yield different results.

17

Packet analysis: single platform-to-device message

LwM2M is 17% more efficient than MQTT at delivering data during a single platform-to-device message.

In this scenario, MachNation tested a single update of an on-device variable initiated from the IoT platform. For
MQTT, we tested a platform-initiated update of a single integer variable (i.e., a counter) via an MQTT message
passed directly from the broker to the device client. For this test, MachNation did not leverage AWS IoT’s device
shadow model17, but instead configured the device client to listen to a specific topic. For LwM2M, MachNation
tested a server-initiated update of the integer (i.e., a counter) within the custom LwM2M object. Overall, the
packet capture window was 2 minutes.

MachNation chose to include a packet analysis for a single platform-to-device message to simulate a one-time,
on-device parameter update, because it is a typical task to adjust an on-device configuration parameter or push a
single command to a connected device.

Overall, MachNation found that LwM2M is 17% more efficient than MQTT at delivering data during a single
platform-to-device message. During the test, MQTT and LwM2M delivered 217 and 181 bytes of data,
respectively. This test is useful in comparing protocol efficiency and overhead, because each protocol transmits an
update of the smallest possible size. One might expect LwM2M to provide better efficiency for longer and more
complex observations or other messages where the MQTT/TCP overhead is more severe, but in real-world
scenarios, most IoT devices should be optimized to only transmit the smallest amount of data required to
accomplish IoT business objectives. LwM2M offers several advantages in this area, providing more flexible and
granular control over the exact type and content of messages exchanged between the device and the platform.

Below we present the data from the single platform-to-device message scenario.

FIGURE 8-1: TOTAL BYTES TRANSFERRED DURING TESTS

FOR A SINGLE PLATFORM-TO-DEVICE MESSAGE
[SOURCE: MACHNATION, 2020]

As shown on Figure 8-1, during a single platform-to-
device message push, LwM2M delivered 17% fewer
bytes of data than MQTT, although both solutions
were quite efficient in this test. Approximately 70%
of the MQTT and 54% of the LwM2M data traveled
from platform to device, showing that the majority
of data during a single message session was
initiated by the platform requesting some action on
the part of the device.

FIGURE 8-2: TOTAL PACKETS TRANSFERRED DURING TESTS

FOR SINGLE PLATFORM-TO-DEVICE MESSAGE
[SOURCE: MACHNATION, 2020]

17 According to AWS’ documentation, the device shadow model is not suggested for usage as a command-and-control
messaging service.

As shown in Figure 8-2, both the MQTT and LwM2M
client required 2 messages, namely 1 from the
platform initiating the update and 1 from the device
confirming the change. Although typical AWS IoT
MQTT implementations may leverage the device
shadow service with its additional messaging
overhead for the management and reporting of data
observations, MachNation’s test is more indicative
of a simple configuration update or platform-to-
device command.

18

FIGURE 8-3: HISTOGRAM OF PACKET LENGTHS DURING

TESTS FOR SINGLE PLATFORM-TO-DEVICE MESSAGE
[SOURCE: MACHNATION, 2020]

As shown on Figure 8-3, during the single platform-
to-device messaging test, LwM2M packet lengths
were of consistent size whereas MQTT packet
lengths varied based on whether data were going to
or from the device. Overall, the average packet
length for LwM2M was 17% less than for MQTT
during the single platform-to-device messaging
scenario.

19

Packet analysis: OTA firmware update

MQTT is 4% more efficient than LwM2M at delivering data during an over-the-air (OTA) firmware update.

In this scenario, MachNation tested a single OTA firmware update of an IoT device. For MQTT, we tested a
platform-initiated OTA update to the device firmware leveraging the AWS IoT “jobs” functionality, as would be
typical for a real-world IoT implementation. For the MQTT client, the update file was stored in an AWS S3 file
storage service, retrieved or pulled by the device over the HTTPS (i.e., HTTP and TLS) protocol, and
communicated its job status via MQTT.

For LwM2M, MachNation tested two implementations of a similar platform-initiated OTA firmware update. In the
first test, we leveraged the standard LwM2M firmware object (/5/) with the file delivered from the Coiote platform
to the device over CoAP with DTLS via the pull method. In the second LwM2M test, we leveraged HTTPS (using
TLS over HTTP) via the “pull” method for delivery of the firmware update itself, while maintaining the CoAP
channel for all other communication. The firmware update for both MQTT and LwM2M clients was an identical
randomly-filled 1,048,576 byte test file. Though the firmware update was not actually applied to the devices, both
clients were configured to report a successful completion of the update task after retrieving the file. Overall, the
packet capture window was 5 minutes.

MachNation chose to include a firmware OTA test to simulate the typical type of update completed on IoT
devices to ensure ongoing security compliance or feature updates and improvements.

Overall, MachNation found that MQTT is 4% more efficient than LwM2M over HTTPS at delivering data during a
firmware OTA update. During the scenario, LwM2M and MQTT used 1.15 and 1.11 megabytes of data,
respectively.

Below we present the data from the OTA firmware update test.

FIGURE 9-1: TOTAL BYTES TRANSFERRED DURING OVER-
THE-AIR FIRMWARE UPDATE
[SOURCE: MACHNATION, 2020]

As shown on Figure 9-1, during an OTA firmware
update, the MQTT client leveraging HTTPS for file
delivery consumed 4% less data than the LwM2M
client over HTTPS and 11% less data than the
LwM2M client over CoAP. In all test cases, almost
all of the data traveled from platform to device, as
expected for firmware updates. And as expected,
the data transferred was close to 1.05 megabytes
(MB), the size of the test file delivered to simulate a
firmware update.

FIGURE 9-2: TOTAL PACKETS TRANSFERRED DURING OVER-
THE-AIR FIRMWARE UPDATE
[SOURCE: MACHNATION, 2020]

As shown on Figure 9-2, during the OTA firmware
update, MQTT delivered 30% fewer packets of data
than LwM2M over HTTPS. The disparity between
total packets transferred is most likely due to the
increased number of messages exchanged between
the LwM2M client and the Coiote platform before
and after the update process. However, despite the
increased total number of messages, as seen in the
previous figure, Figure 9-1, the overall impact on
total bytes transferred is nearly negligible.

20

FIGURE 9-3A: BYTES AND PACKETS TRANSFERRED DURING

LWM2M (COAP) OVER-THE-AIR FIRMWARE UPDATE TIME

[SOURCE: MACHNATION, 2020]

FIGURE 9-3B: BYTES AND PACKETS TRANSFERRED DURING

MQTT OVER-THE-AIR FIRMWARE UPDATE TIME
[SOURCE: MACHNATION, 2020]

FIGURE 9-3C: BYTES AND PACKETS TRANSFERRED DURING

LWM2M (HTTPS) OVER-THE-AIR FIRMWARE UPDATE TIME

(TRUNCATED TIME FRAME)
[SOURCE: MACHNATION, 2020]

As shown on Figures 9-3a, 9-3b, and 9-3c, the data
and packet transfer patterns over time vary across
the two clients. The LwM2M client leveraging CoAP
(Figure 9-3a) sent small individual packets over a
greater length of time compared to the other tests.
Leveraging HTTPS for the transfer of the firmware
file (Figure 9-3b), the MQTT client quickly retrieved
the entire firmware file from AWS S3, then reported
its successful update status to the AWS IoT jobs
service via MQTT. The LwM2M client leveraging
HTTPS (Figure 9-3c) exhibited a transfer similar to
the MQTT over HTTPS client, although with a more
pronounced spike. It is worth mentioning that AWS’
MQTT client does not provide the same resilience to
interrupted communication during a FOTA process
as the LwM2M client. Therefore, an interrupted
FOTA download over AWS MQTT would require re-
transmission of the entire firmware image, whereas
the out-of-the-box LwM2M client supports
resumption of the download from point of
interruption. This could have significant implications
on download time and amount of data transferred.

21

FIGURE 9-4: HISTOGRAM OF PACKET LENGTHS DURING

OVER-THE-AIR FIRMWARE UPDATE
[SOURCE: MACHNATION, 2020]

As shown on Figure 9-4 and confirming our prior
statements, MQTT and LwM2M over HTTPS uses a
small number of large packets to grab the firmware
update file, whereas LwM2M over CoAP uses a
larger number of small packets to complete the
transfer. This difference may be important in
environments where network connectivity is
constrained by bandwidth or maximum MTU size,
such as in low-power wide-area (LPWA) or 2G/3G
cellular networks, where supported.

22

Power consumption: idle, 1, 30, and 60-second observation reporting intervals

MQTT devices consume 33% more power than LwM2M devices when measured at idle and 1, 30, and 60-
second update intervals, when testing the AWS IoT Python-based SDK against the C-based Anjay SDK.

In this scenario, MachNation tested power consumption measured in watt-hours (Wh) of an IoT device. For
MQTT, we tested the AWS IoT client connected to the AWS IoT platform, configured to send a device shadow
update including one string, one floating-point number, one integer, and one Boolean value, at varying reporting
intervals. For LwM2M, we tested the Anjay client connected to the AVSystem Coiote IoT Device Management
platform with various server-initiated reporting intervals for a single custom LwM2M object containing the same
set of data as the MQTT observation. The reporting intervals tested were

 Idle (no messages sent)

 1-second interval (60 messages per minute)

 30-second interval (2 messages per minute)

 60-second interval (1 message per minute).

Overall, the measurement period was 10 minutes per tested reporting interval.

MachNation chose to test power consumption, because many IoT devices are battery powered and expected to
last 10 or more years in the field. As such, any additional power consumption caused by the messaging or device
management client can negatively impact device longevity.

Overall, MachNation found that a device with an MQTT client consumes 33% more power than a device with
LwM2M. During the scenario, LwM2M and MQTT in the idle state consumed 0.572 and 0.433 Wh, respectively. In
addition there is little significant difference across intervals tested (i.e., idle, 1 second, 30 second, and 60 second
intervals). This is likely due to the lack of power management optimization in the Raspberry Pi hardware used for
MachNation’s tests, however, this finding will require additional testing to draw further conclusions.

Although it is tempting to attribute the LwM2M and MQTT power-consumption differences to the underlying
protocols leveraged, MachNation suspects the observed differences may be due to the different device client
frameworks implemented. Specifically, the Python-based AWS device client, while quite performant, requires
extra computational effort to execute compared to the C-based Anjay client. The Anjay client is available only as a
C-based library, whereas the AWS IoT SDK is available in a variety of programming languages, many of them
based on higher-level languages such as JavaScript/Node.js or Python. While we attempted to test the AWS IoT
SDK for embedded C, the current generally-available (GA) version of the embedded-C SDK lacks typical features
compared to Amazon AWS’ other GA SDKs. The replacement embedded-C SDK was not GA and as a result was
not used for testing.

Below we present the data from the power-consumption scenarios.

23

FIGURE 10-1: POWER CONSUMPTION OF IOT DEVICE IN THE

IDLE STATE AND UNDERGOING 1-SECOND, 30-SECOND,

AND 60-SECOND UPDATE INTERVALS IN WATT-HOURS

[SOURCE: MACHNATION, 2020]

As shown on Figure 10-1, during all four tests, MQTT
consumed approximately 33% more power in watt-
hours than LwM2M. Interestingly, the data update
interval—whether 1, 30, or 60 seconds—did not
impact the percentage difference in power
consumption between MQTT and LwM2M. It is
likely that a lack of power optimization in the
System on a Chip (SoC) of the tested hardware as
well as differences in the Python- and C-based SDKs
contributed to the differences more so than any
differences in the underlying communication
protocols. In addition, while not tested here, the
LwM2M specification does provide additional
options for deep sleep between messaging intervals,
while similar functionality must be custom
implemented for comparable MQTT-based
solutions.

24

Qualitative evaluation: business comparison

MQTT is more readily available, easier to procure, and easier to test than LwM2M.

There were several noteworthy differences in terms of ease of implementation from a business perspective when
comparing the AWS and AVSystem device clients. Of particular note is the relative availability and ease of
procurement of MQTT versus LwM2M clients and tools, even in cases of vendor-specific MQTT clients such as the
AWS IoT SDK.

There are numerous MQTT libraries, implementations, and sample code available to help enterprises and
developers rapidly deploy MQTT-based solutions. Amazon offers several versions of the AWS IoT SDK, all of them
open source and supporting a wide variety of programming languages. Analogous solutions can be found for
other public-cloud vendors such as Microsoft Azure IoT. Of note, nearly all IoT platform vendors release the full
source code for multiple languages for their respective MQTT implementations. In general, there are many
projects and applications within the IoT world that support MQTT, with it largely being viewed as a de facto
standard for IoT devices.

Conversely, there are only a few reference implementations for LwM2M version 1.0 currently available on GitHub,
although some chipset and module manufacturers provide their own LwM2M clients for their products.18 The
relative lack of reference LwM2M clients is problematic for an ecosystem that desires to increase LwM2M’s
market share relative to MQTT. As mentioned, MachNation recommends that the LwM2M ecosystem creates
productized, publicly available, reference LwM2M clients with supporting documentation to empower enterprise
developers to create IoT solutions and POCs using LwM2M as easily as with MQTT.

Qualitative evaluation: technical comparison

Initial implementation complexity associated with LwM2M can yield more cost-effective, technically-flexible
IoT deployments compared to MQTT.

There are many positives for the LwM2M relative to the MQTT protocol in terms of technical capabilities. As
already summarized above, MachNation found LwM2M to be more efficient in terms of packets and bytes sent
and received during testing. LwM2M also has distinct advantages around the predictability of packet sizes, with
more consistent packet exchanges during routine operations such as firmware updates as well as during
observation reporting. LwM2M benefits from its use of CoAP and UDP as the underlying transport compared to
MQTT and TCP. TCP connections, by their nature, require an acknowledgement packet to be sent for every data
packet sent. Additionally, some vendor-specific implementations, such as AWS’ IoT Device Shadow service, are
significantly less efficient in terms of redundant messaging compared to LwM2M, resulting in more chatty MQTT-
based communication.

Although the total savings in terms of bytes transferred is significant for L2M2M and might yield cost savings
from use of less data and lower power consumption, what is perhaps more significant is the predictability of
LwM2M messages. With consistent packet sizes and message size per operation, both customers and network
operators can readily optimize their communication layers to handle large numbers of connected IoT assets,
especially over MTU-constrained networks. Additionally, while MachNation did not test these capabilities within
this study, LwM2M offers several additional communication-layer benefits, such as non-IP data delivery (NIDD),
enabling messages to be transferred over wireless control plane channels rather than traditional IP-based
channels.

18 All major cellular IoT hardware manufacturers including chipset, module, and end-device manufacturers have completed or
initiated interoperability projects with AT&T. This suggests a significant increase in support for LwM2M in the
telecommunications industry.

25

From a technical implementation perspective, MQTT tends to be faster to initially implement than LwM2M,
although MQTT can negatively impact enterprises due to future, unanticipated development costs associated
with vendor-specific implementations. MQTT is similar to traditional RESTful HTTPS-based interfaces, where the
customer and platform are freely allowed to implement message and data schemas as desired. With MQTT, a
developer can define a JSON object with desired attributes and freely push messages to and from the server and
IoT devices. However, many vendors’ products, such as Amazon AWS IoT and Microsoft Azure IoT, implement
vendor-specific reserved topics and other vendor-specific authentication schemas for MQTT. These schemas
make switching IoT platforms more difficult, because switching would require a developer to refactor code, even
if the underlying MQTT protocol used on the devices is the same.

LwM2M is more difficult to implement correctly today.19 Achieving the same result with LwM2M as with MQTT
requires the device client to normalize data before it is sent to the broker. It also requires the developer to
potentially implement custom object types that require separate out-of-band coordination of XML-type
definitions. Further, the complexities of load-balancing and scaling UDP connections carrying DTLS-encrypted
CoAP packets can add additional complexity for IoT platform vendors with large device deployments.

However, the upside to all the additional LwM2M complexity is a well-standardized, cross-vendor protocol that
can save developers time over the life of an IoT deployment. Rather than letting the vendor define various
reserved topics or vendor-specific authentication schemas, LwM2M provides a well-defined schema for both
device management and observation data delivery. Leveraging OMA’s IPSO Smart Objects to provide schemas
for many data types, LwM2M enables any device with a well-defined observation type to report that data in a
non-vendor-specific dialect. Further, LwM2M provides standard methods for firmware updates, management of
observation reporting intervals, and many typical device management functionalities. All of this is available in the
specification and while it can be challenging to implement20 for customers new to IoT, the specification forces
developers to resolve both immediate and future technical challenges at the inception of device integration,
rather than allowing poor initial decisions to become apparent later in the deployment cycle.

Ultimately, LwM2M is a technical specification, which may, given proper enablement from platform vendors,
ultimately supplant the fragmented MQTT landscape as the de facto standard for IoT devices. For specific use
cases, particularly those using cellular and constrained/low-powered devices, it is possible that most of the
complexity of LwM2M could be handled by chipset and module manufacturers that choose AT commands as the
primary method of communication with the underlying LwM2M library and are willing to offload device
management and communications to a baseband chipset vendor.

19 The difficulties in implementing LwM2M could arise from technology, documentation, or vendor-support issues. However, it
is quite possible that as LwM2M matures, these deficiencies will be addressed.
20 See footnote 19.

26

As with all high-quality, primary, test lab-based research, there are more areas to investigate. MachNation
suggests the following areas of future research to further clarify the benefits and shortcomings of LwM2M- and
MQTT-based solutions:

 Testing of LwM2M in constrained-network environments, such as LPWAN networks including NB-IoT
and LTE Cat M1, 2G/3G networks (where they exist and are relevant for customer implementations), and
LwM2M over control-plane communication protocols

 Testing of power consumption on power-optimized and CPU-constrained devices, such as lower-
powered Arm-based SoCs or MCUs

 Testing of additional LwM2M device client frameworks, such as the Eclipse Foundation’s Leshan client
SDK and possibly LwM2M clients from various chipset and module manufacturers, some of which are
mentioned in footnote 18

 Testing of additional vendor-specific MQTT implementations, such as Microsoft Azure IoT’s device SDK

Areas of Future Suggested Research

27

By choosing the right technology protocol, IoT developers will help enterprises bring their IoT solutions to market
faster, save ongoing development and management costs, and future-proof their IoT solutions.

One of the most important technology protocols is the one that facilitates platform-to-device communications
and, in some cases, supports management of IoT devices. LwM2M and MQTT are two of the most common
protocols that enterprise IoT developers consider to solve these challenges.

To help developers and enterprises make fact-based choices when selecting technology, MachNation, with
technology support from AT&T and AVSystem, designed and completed a set of hands-on tests to investigate the
relative efficiencies of LwM2M and MQTT protocols.

In summary, this research found that on a typical IoT device using an MQTT client versus one using a LwM2M
client:

 LwM2M shows efficiency and performance benefits over MQTT in almost all test categories including
amounts of data transferred during the initial device-to-platform connection (or after device reboot), the
steady ongoing state of a device connection, device observations at 2 updates per minute, and a single
platform-to-device message push. In addition, a LwM2M-equipped device consumes less power than a
similarly-equipped MQTT device irrespective of the update interval, although it is possible that such
differences stem from the device client framework rather than protocol used. Finally, LwM2M requires
more forethought during the design and development process21, but yields several important technical
advantages.

 MQTT shows slight22 efficiency and performance benefits over LwM2M in the amount of data transferred
during an OTA firmware update. MQTT is easier and faster to deploy on an IoT device23, though allows
many important device-integration questions to go unresolved during initial deployment and rollout,
possibly creating unknown, future costs for enterprises.

MachNation will continue to investigate the differences between IoT technologies like LwM2M and MQTT in
subsequent work.

21 The difficulties of implementing LwM2M clients likely come from LwM2M’s relatively sparse documentation and lack of
support for existing open-ecosystem clients relative to MQTT.
22 As previously discussed, the slight efficiency benefits of MQTT over LwM2M could be insignificant. MachNation supports the
results of this whitepaper based on the technology selected for testing as shown on Figure 3. MachNation also recommends
additional testing of OTA updates using different clients and devices.
23 This relative ease of deployment likely comes from ease of implementation on both server- and client-side technology, good
documentation, and strong support for existing open-ecosystem clients.

Conclusions

28

MachNation would like to thank AT&T and AVSystem for their sponsorship of this technical study.

About AT&T Communications

We help family, friends and neighbors connect in meaningful ways every day. From the first phone call 140+ years
ago to mobile video streaming, we innovate to improve lives. We have the nation’s fastest wireless network.**
And according to America’s biggest test, we have the nation’s best wireless network.*** We’re building FirstNet
just for first responders and creating next-generation mobile 5G. With a range of TV and video products, we
deliver entertainment people love to talk about. Our smart, highly secure solutions serve nearly 3 million global
businesses – nearly all of the Fortune 1000. And worldwide, our spirit of service drives employees to give back to
their communities.

AT&T Communications is part of AT&T Inc. (NYSE:T). Learn more at att.com/CommunicationsNews.

AT&T products and services are provided or offered by subsidiaries and affiliates of AT&T Inc. under the AT&T
brand and not by AT&T Inc. Additional information about AT&T products and services is available at
about.att.com. Follow our news on Twitter at @ATT, on Facebook at facebook.com/att and on YouTube at
youtube.com/att.

© 2020 AT&T Intellectual Property. All rights reserved. AT&T, the Globe logo and other marks are trademarks
and service marks of AT&T Intellectual Property and/or AT&T affiliated companies. All other marks contained
herein are the property of their respective owners.

**Based on analysis by Ookla® of Speedtest Intelligence® data average download speeds for Q3 2019. Ookla
trademarks used under license and reprinted with permission.
***GWS OneScore, September 2019.

About AVSystem

No IoT deployment is successful without proper device management – this is what AVSystem stands for. We help
companies around the globe deliver better quality of service thanks to our best-in-class device management
solutions. We also focus on WiFi VAS and indoor location as well as systems for SDN and NFV. In addition to
creating software, we actively participate in the standardization process of the Lightweight M2M (LwM2M)
standard to enable secure device management in the IoT ecosystem. More than 100 companies worldwide,
including some of the world’s largest mobile network operators, rely on AVSystem to expedite their IoT service
deployments. Learn more at www.avsystem.com.

About MachNation

MachNation is exclusively dedicated to testing and benchmarking Internet of Things (IoT) platforms, middleware,
and services. MachNation owns and runs MachNation IoT Test Environment (MIT-E), the industry’s only
independent, hands-on, benchmarking lab for IoT platforms. As the first provider of IoT performance and
scalability testing, MachNation testers, developers, and analysts provide guidance to industrial enterprises, the
world’s leading IT vendors, and communication service providers. MachNation participates in many of the world’s
most exclusive IoT events and contributes regularly to leading IoT and business press. For more information,
contact us.

About Project Sponsors

https://www.firstnet.com/
https://about.att.com/category/all_news.html
https://about.att.com/category/att_communications_news
https://about.att.com/category/all_news.html
http://www.facebook.com/att
http://www.youtube.com/att
https://www.avsystem.com/
http://www.avsystem.com/
https://www.machnation.com/testing-and-benchmarking/
http://www.machnation.com/product/iot-performance-software/
http://www.machnation.com/product/iot-performance-software/
https://www.machnation.com/contact/

