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Built upon standards established by the 
3rd Generation Partnership Project (3GPP), 
Narrowband IoT (NB-IoT) cellular networks 
now provide cost-efficient access to a massive 
number of resource-constrained IoT devices 
via mobile radio access networks. To take full 
advantage of NB-IoT, IoT solution developers 
need to understand the capabilities and 
constraints of the NB-IoT data communication.

Most IoT solution providers have a 
background in designing web or enterprise 
applications and are intimately familiar 
with the web protocol stack. Optimized IoT 
applications, however, require a specialized 
application-level data transport protocol 
and an IoT-centric communications stack. 

For devices operating in remote locations, 
Message Queuing Telemetry Transport 
(MQTT) is often suggested as the preferred 
messaging protocol. MQTT, however, relies on 
the TCP/IP stack as the underlying transport, 
and TCP is suboptimal for connecting over 
mobile networks. 

The Internet Engineering Task Force (IETF) 
developed the Constrained Application 
Protocol (CoAP) as an extremely lightweight 
communications protocol stack suitable 
for resource-constrained, remote devices. 
CoAP evolves and streamlines the web 
Representational State Transfer (REST)-ful 
model inherent in the HTTP to make it as 
efficient and lightweight as possible. 

The Open Mobile Alliance (OMA) uses CoAP 
in the lightweight machine-to-machine 
(LWM2M) IoT device management standard. 
LWM2M enables remote management and 
control of IoT devices using a streamlined 
managed objects model and provides 
interfaces for securely monitoring and 
administering devices. 

In this document, we highlight the main 
characteristics of IoT protocols and assess 
their suitability for the deployment over NB-
IoT mobile networks both over IP and without 
IP using Non-IP Data Delivery (NIDD).

To deliver on its massive transformative potential, the Internet of Things needs to interconnect 
an enormous number of devices, services, and applications over data networks as efficiently 
as possible. Given the ever-growing diversity of devices—from resource-constrained sensors 
to sophisticated smart phones—broad range of environments, and myriad evolving use cases, 
building viable IoT solutions would be practically impossible if not for the decades of groundwork 
that have gone into creating messaging protocols for the web and mobile communications. 

INTRODUCTION 
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The Internet of Things is growing to 
encompass an enormous range of 
applications and devices. It is critical for the 
success of an IoT solution that not only the 
correct devices are used with the appropriate 
communications technologies, but also that 
the characteristics and patterns of the device 
data reporting, such as frequency, volume of 
data, and required upstream and downstream 
bandwidth, are accounted for. Access to 
power and the amount of electricity consumed 
by devices are also crucial considerations. 

Fig. 1 presents an example of such 
classification mapping the typical areas of IoT 
applications, 3GPP-defined device classes, 

and main characteristics of the related 
mobile data technologies. Successful IoT 
solutions require that the correct devices are 
used with the appropriate communications 
technologies, and that the characteristics and 
patterns of the device data reporting, such as 
frequency and volume of data are accounted 
and planned for in the solution design phase.

NB-IoT is a recent evolution of the 3GPP LTE 
standard that provides efficient deployment 
of resource-constrained, low-cost IoT devices 
on contemporary mobile networks. NB-IoT 
defines communication channels with limited 
characteristics suitable for constrained, low-
maintenance devices that offer long battery 

life and cost-efficiency. The constrained 
nature of NB-IoT devices and networks calls 
for careful planning of the communications 
patterns and higher-level application data 
communication protocol.

Fig. 2 presents characteristics of the NB-IoT 
data communication and recommendations 
for appropriate use of devices, 
communication patterns, and suitable 
classes of IoT applications. The rest of this 
paper explores the MQTT and CoAP/LWM2M 
messaging protocols and provides analysis 
and recommendations on the appropriate 
uses for each.

Fig. 1: Emerging IoT solutions and devices 
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Fig. 2: Recommended bandwidth and payload characteristics for NB-IoT and LTE IoT devices

WHAT IS NB-IoT? 
NB-IoT is a mobile access technology targeted 
at low-cost support for the massive deployment 
of lightweight and constrained IoT devices. 
As such, it has the characteristics of the 
constrained network; specifically, its effective 
bandwidth in one sector is limited to 226.7 
Kbps peak, and the overlaying protocols must 
efficiently address the low-level fragmentation. 
The protocol targets latency-insensitive 
applications. While NB-IoT is designed to 
allow less than 10 sec latency, typical NB-IoT 
devices and applications tolerate from 10 sec 
to more than 100 sec of latency. The NB-IoT 
devices suitable for applications that require 
long battery life (e.g., 10+ years) and where the 
devices are expected to transmit an average 
200 bytes per day.1

NB-IoT can be used in both IP and NIDD modes. 
The data transmission cost is essentially the 
same as it is applied to gross transmitted 
data, not to the effective payload. Application 
developers need to be very efficient in their 

data transmission protocols and minimize the 
overhead of the data to be transmitted over 
cellular networks.

The new OMA LWM2M 1.1 protocol provides 
the necessary transport binding for deploying 
over the NB-IoT access networks. It is based on 
the streamlined CoAP and contains necessary 
semantics for performing device management 
and ensuring data transmission via the 
information-reporting interface.

The New NB-IoT Hourglass
NB-IoT presents developers with the 
challenge of fitting the IoT communication 
from constrained devices into a constrained 
communication channel with: 

nn Narrow bandwidth 
nn Low occurrence of data transactions
nn Very small payloads
nn High to very high latency
nn Devices in sleep mode most of the time

Developers need to eliminate an unnecessary 
overhead introduced by the IP, TCP, and TLS. 
The IoT device classes targeted by cellular 
IoT and NB-IoT technologies will typically 
transmit from a single byte to tens of bytes 
in one payload. The devices will be in sleep 
mode most of the time, and there are strong 
limitations imposed by the network on this 
highly streamlined data transmission channel. 
Typically, the bandwidth will be around 10 
kbps, and the payload has to fit in the radio 
frame. Devices are supposed to transmit very 
infrequently—at most, several times per hour, 
and the transmission latency may be very 
high, from 10 sec. to 100 sec.

These limitations are challenging for an 
industry used to the relative freedom 
of modern high-end communications 
channels. Cellular LTE networks deliver 10+ 
Mbps bandwidth with latency measured in 
milliseconds. Plus, reliable, long-lived TCP 
connections are always available. With the 

Functionality NB-IoT Non-IP/IP LTE

Peak Data Rates DN: 15-20 Kbps; Up: 20-25 Kbps ~ 300 Kbps

SMS Yes Yes

Mobility Idle mobility Yes

MQTT-Data No Yes

CoAP Yes Yes

LwM2M - Device Mgmt Non-IP: Device Management, IP: SW updates Yes

LwM2M - Data Yes Yes

Advantage Deeper in-building coverage Higher data rates, mobility voice

Device Profile Low Med High

Connections per day Up to 2 Up to 48 (every 30 
min) Up to 240 (every 6 min) No limit

Proj. Message size, bytes 50 150 350 1500

Size of user data
Per day (bytes) max

100 bytes per day
0.036 bytes per day

4800 bytes per day
1.7 Mb per year

36000 bytes per day
~13 Mb per year 750,000

Acceptable latency, s 20 to 60 10 to 20 < 10 Low

Location No Yes Yes Yes

Mobility Stationary Mobile Mobile Mobile

Typical Applications Sensors, Metering:
Water, Gas. Air

Smart Infrastructure:
City Lighting, Parking

Limited Trackers:
Smart Bicycle, Livestock

Real Time Trackers: Kids, Pets
Wearables, Connected Transport
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effective payload on the order of magnitude of 
bytes, the overhead introduced by the TCP/IP 
stack becomes significant and can be 10x to 
100x relative to actual payload.

NB-IoT allows constrained devices to 
overcome this limitation by introducing 
NIDD and eliminating the TCP/IP stack 

completely. However, this poses a new 
challenge for application developers, 
requiring them to address the need to 
manage payload fragmentation, in-order 
delivery, and flow control. 

The combination of NB-IoT with the 
technologies in the LWM2M 1.1 stack 

effectively addresses those challenges and 
allows smooth transition to the constrained 
NB-IoT stack. Moreover, not only does it 
deliver data efficiently, but LWM2M’s device 
management functionality enables the 
devices themselves to be managed remotely—
allowing for low-maintenance, long-battery-
life device deployments and solutions.

In this model, the CoAP becomes the new spanning technology—the waist of the new NB-IoT hourglass model. With built-in congestion control, 
block-wise transfer fragmentation handling mechanism, efficient coding of the headers (options) and payload, and the ability to effectively 
transport agnostically, CoAP can be reused for both IP- and non-IP-based NB-IoT deployments.

Fig. 4: MQTT protocol stack and baseline sequence, QoS 1 and QoS 2 messages

Fig. 3: Narrowband IoT hourglass model

Web Model: 1000s of bytes

WWW, LwM2M, IoT, ...

HTTP, WS, MQTT, CoAP

TLS, DTLS

TCP, UDP

IP

Ethernet, WiFi, LTE

Copper, Fiber, Radio 

LwM2M

CoAP

DTLS

UDP NIDD

IP

NB-IoT

Cellular Radio

Efficient Payload
SenML, CBOR ...

Constrained IoT Model: 1s to 100s of bytes



6

IoT Solution Developer Protocols Guide

According to the Eclipse 2018 IoT Developer 
Survey, MQTT today is the leading messaging 
protocol in use today, followed by the group of 
web protocols, including HTTP 1.1, HTTP/2, and 
WebSocket. CoAP is the only leading UDP-
based protocol.

It is worth noting that the popularity of the 
proprietary in-house protocol implementations 
is declining as developers realize that 
standardized, reliable data protocols with 
reasonable messaging or REST semantics are 
required to deliver interoperable performance 
for IoT solutions.

The web-based protocols are primarily used 
for communication on browser-based clients, 
which typically run on relatively high-capability 
devices, such as smartphones that use relatively 
high-bandwidth communications channels 
(e.g., LTE). However, the two protocols most 
suitable for mass IoT market are MQTT over 

DATA COMMUNICATION PROTOCOLS FOR THE 
INTERNET OF THINGS

Fig. 5: Popularity of IoT data transport protocols in 20182
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TCP and LWM2M and CoAP over UDP. For all 
applications and devices deployed over NB-
IoT, CoAP/LWM2M is recommended. 

Both HTTP and MQTT require TCP/IP as the 
underlying transport and are not suitable for 
NB-IoT NIDD communication channels. In 
contrast, CoAP itself and CoAP-based LWM2M 
use UDP and can be deployed over NIDD since 
the only requirement is that the CoAP packets 
fit into a datagram. MQTT is the only protocol 
that fully supports the publish-subscribe 
messaging model, whereas HTTP and CoAP 
are REST based.

CoAP can be seen as the evolution of HTTP for 
resource-constrained devices and networks, 
and reuses some HTTP verbs, such as GET, 
POST, PUT, and DELETE. CoAP and LWM2M 
allow developers to use the observe/notify 
pattern modeled after the software observer 
design pattern. MQTT does not specify the 
payload format. While CoAP follows the 
web model similar to the HTTP content-
type, LWM2M defines a specific format for 
representing objects and resources.

Even though CoAP requires that a single 
CoAP/LWM2M packet must fit into a UDP 
datagram, a mechanism has been developed 
to handle fragmentation and transfer large 
data on the application level.3 

As we will demonstrate further in this 
document, MQTT protocol is most suitable 
for relatively unconstrained applications 
where long-standing connections and large 
data payloads on the order of magnitude of 
hundreds to thousands of bytes are expected. 
CoAP and LWM2M are better suited for 
resource-constrained IoT applications and 
devices, where the payloads are very small.

MQTT
MQTT is the lightweight application layer 
messaging protocol designed for the relatively 
resource-constrained devices used for IoT 
applications.2 It requires reliable, lossless, 
in-order delivery of packets, and relies on the 
TCP/IP-based reliability and ordered delivery. 
However, MQTT requires much less overhead 
than HTTP.

MQTT uses a topic-based, publish-subscribe 
model. Clients willing to transmit data connect 
to MQTT servers called message brokers 
by issuing the CONNECT command. If the 
connection is accepted, an MQTT broker 
replies with the CONNACK command. After 
the connection is established, data can flow in 
both directions.

Clients send data to servers in the PUBLISH 
messages associated to a particular topic. 
Clients willing to receive messages from 
message brokers indicate so by issuing a 
SUBSCRIBE command to the MQTT message 
broker, indicating a particular topic. As soon 
as publishing clients PUBLISH messages, all 
subscribers to the same topic start receiving 
notifications (PUBLISH messages) from the 
message broker.
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Request / Response Sub-layer:
RESTful interaction

GET, POST, PUT, DELETE, URIs
Internet Media Types: JSON, XML, octet-stream

De-duplication, retransmissions,
de-fragmentation

Any Datagram-based transport:
UDP, NIDD, SMS

Message Sub-layer: Reliability

DTLS

CoAP

UDP

Non-IP Data
Delivery

Fig. 6: CoAP messaging model and functional layers

Table 1: MQTT quality-of-service levels

CoAP
CoAP has been specifically designed by 
the IETF to meet the requirements of the 
constrained devices and communications 
channels. It is based on the REST 
architecture following the synchronous 
request-response HTTP model. CoAP uses 
the GET, PUT, POST, and DELETE methods 
and response codes similar to, but not 
exactly like, HTTP. Therefore, it is easy to 
map CoAP traffic from devices to the RESTful 
API logic.

CoAP uses the resource model mapped to the 

Universal Resource Identifier (URI) instead 
of MQTT topics. However, there is a similarity 
between the CoAP URIs and MQTT topics.
For example, sensor devices publishing 
their sensor information to a server could be 
described in the following manner:

nn CoAP sensor publishing to CoAP 
server: URI: coap://devices/sensors/
temperature

nn MQTT client publishing to a sensor 
queue on the broker: topic: “/devices/
sensors/temperature”

The CoAP message format is compact and 

lightweight with only 4-byte fixed header 
encoding the GET, POST, PUT, DELETE 
methods and response codes, type of 
message (confirmable or nonconfirmable), 
and MessageID used to correlate requests with 
responses (ACKs). 

Variable token is used for longer-term session 

MQTT message reliability (on top of the TCP) is assured by the three quality-of-service (QoS) levels:

QoS Level Model Description

0 At most once Unreliable level – Message is delivered without duplication; no acknowledgment is required

1 At least once Reliable level – Message is delivered at least once with possible duplications; acknowledgment is required

2 Exactly once Reliable without duplications – MQTT uses four-way handshake mechanism to ensure that the message is 
delivered without duplications

Fig. 7: CoAP message format

4 byte fixed header Methods: GET, POST, PUT, DELETE
Type: CON / NON, MessageID

Long term session ID for Observation /
Notifications

URI-Host, URI-Path, ..., Content-Format ...

Payload: JSON, XML, CBOR, octet-stream...

0-8 bytes variable Token

variable: Options

CoAP
Headers

Payload

Marker: 0xFF var. Payload ...
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Fig. 8: CoAP resource observations with confirmable notifications. Illustration courtesy of K. Hartke, Universitaet Bremen TZI.

semantics (e.g., matching notifications to 
a particular observation request). Variable 
options encode URI, content-format, and 
information usually transmitted in the HTTP 
headers, followed by the variable payload, 
which can be any internet format specified 
by the content-format options, e.g., JSON, 
XML, or octet-stream. CoAP is extremely 
lightweight with only a 4-byte mandatory 
header. While MQTT specifies only 2 bytes 
for the fixed header, in reality, it has to always 
carry another 2-byte MessageID for any MQTT 
PUBLISH request.

CoAP’s request-response mode is 
asynchronous and nonblocking. A client does 
not have to wait for the response to initiate 
another request, and CoAP responses can also 
carry data so that no round trips are wasted.

The main difference between CoAP and 
MQTT results from the MQTT requirement 
to run on the reliable, lossless, in-order, 
byte-stream delivery transport, which 
effectively mandates the TCP/IP stack. 

CoAP, on the other hand, runs on top of UDP 
and provides its own reliability mechanism 
using confirmable and nonconfirmable 
message types, and the block-wise transfer 
fragmentation mechanism.

Transport layer security for CoAP is 
seamlessly provided in the Datagram 
Transport Layer Security (DTLS) protocol. 
CoAP provides its own reliability, flow control, 
and fragmentation handling layers, and the 
only hard requirement is that a CoAP message 
fits into an underlying protocol’s datagram, 
meaning it can easily and seamlessly be 
deployed on any datagram-based transport, 
such as SMS or NB-IoT NIDD.

Another remarkable feature of CoAP is 
the ability to perform asynchronous push 
observe/notify requests, which are modeled 
after the observer software pattern. A server 
initiates a request to observe particular 
resources on the CoAP client. The client 
remembers the request and notifies the 
server each time the state of the observed 

resources change.

CoAP provides its own reliability mechanism 
using confirmable messages and 
nonconfirmable messages. Confirmable 
messages have the type “0” (CON), require 
an acknowledgment (message type 2 - ACK), 
and the client will continue resending it until 
it receives the ACK message from the server 
or it times out. Nonconfirmable messages 
have the type “v1” (NON) and the client will 
not wait for the ACK. CoAP ACK messages 
can carry useful payload data and themselves 
do not require separate ACKs. The CoAP 
block-wise transfer mechanism ensures 
reliable transmission of large-size payloads by 
splitting it in chunks that are guaranteed to fit 
into the lower-level datagrams (Fig. 9). 

Whereas CoAP does not provide an explicit 
quality-of-service model (unlike MQTT), the 
confirmable/nonconfirmable message types 
allow it to loosely map to the MQTT QoS 
semantics as follows:

Device Resource State

Reported Device Resource State

Device (CoAP Server)

GET Observe Notify

Application (CoAP Client)

Notify Notify Retransmission
X
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Fig. 9: CoAP fragmentation handling with block-wise transfer for large-size payload

Table 2: CoAP and MQTT QoS mapping

CoAP message type MQTT QoS level Description

NON – Nonconfirmable 0 – At most once Unreliable delivery; messages may be lost

CON – Confirmable 1 – At least once Reliable delivery; messages will not be lost, but may be duplicated

4 byte fixed header Methods: GET, POST, PUT, DELETE
Type: CON / NON, MessageID

Long term session ID for Observation /
Notifications

URI-Path: 1/0/1, URI-Query: ep=2abf23...

Payload: application/vnd.oma.lwm2m+tlv

0-8 bytes variable Token

variable: Options

CoAP
Headers

LwM2M
Payload

Marker: 0xFF var. Payload ...

Fig 10: LWM2M fields mapped on CoAP message format

OMA Lightweight M2M (LWM2M)
Defined by the Open Mobile Alliance, LWM2M is built on the CoAP protocol, creates a specific CoAP profile, adds the object model for data 
representation on devices, and enables efficient binary payload.
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Fig. 10 shows how LWM2M reuses CoAP headers and maps all LWM2M-specific information into the LWM2M payload (URI parameters, specific 
LWM2M content formats, etc.). Everything else is encoded in the payload in an efficient binary manner.

LWM2M 1.15 mandates plain text, opaque binary, and CoRE Link data formats for client implementations to ensure on-the-wire data transmission efficiency 
and recommends implementing one of the two new data formats based on Sensor Markup Language (SenML) using either JSON or Concise Binary Object 
Representation (CBOR). Previously mandatory in LWM2M 1.0 type-length-value (TLV) and optional, JSON is not recommended for use in LWM2M 1.1.

Data format IANA media type CoAP content-format Client mandatory

Plain text Text/plain 0 1.0 optional, 1.1 mandatory

CoRE Link Application/link-format 40 1.0 optional, 1.1 mandatory

Opaque Application/octet-stream 42 1.0 mandatory for firmware downloads, 1.1 mandatory

TLV Application/vnd.oma.lwn2m+tlv 11542 1.0 mandatory, 1.1 not recommended

JSON Application/vnd.oma.lwm2m+json 11543 1.0 optional, 1.1 not recommended

SenML JSON Application/senml+json 110 1.0 N/A, 1.1 recommended

SenML CBOR Application/senml+cbor 112 1.0 N/A, 1.1 recommended

LWM2M uses a flat object/resource model to describe sensor/actuator model for devices, where a client device contains data structures mapped 
to the device architecture and described by an object definition. Each object may have zero or more instances, and each instance contains 
resources, which can contain values and be readable, writable, or executable. LWM2M defines a set of objects; however, the objects may be 
defined outside of the LWM2M specification and used to model sensors and actuators of a device.

Below is a simple example of a smart lighting controller containing sensor and switch/dimmer objects:

ID Name Operations Type Range Units Description

5850 On/Off RW Boolean Turn the light on or off

5851 Dimmer RW Integer 0–100 % Light dimmer setting

5852 On Time RW Integer sec Time in seconds that the device has been on

5750 Application Type RW String Application type, e.g., “Smart Dimmer”

Table 3: LWM2M 1.1 data formats

Table 4: Example of the definition of a smart switch actuator object and resources (object URN: urn:oma:lwm2m:ext:3306)
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Related LWM2M/CoAP payload could then be:
 
Light dimmer actuator LWM2M payload example (human readable contents of the binary TLV):

[URI-Path: /3306/0]    	  // CoAP Path-Identifier of the Actuator object with the ID 3306 and instance 0

[Lightweight M2M TLV]:

 - 5850: 1			   // Light is on			   - value of resource 5850
   
 - 5851: 73			  // Dimmer is at 73% setting		  - value of resource 5851

 - 5852: 1800		  // Light has been on for 30 minutes	 - value of resource 5852

 - 5750: “Smart Dimmer”	 // Application “Smart Dimmer” 	 - value of resource 5750

ID Name Operations Type Range Units Description

5700 Sensor Value R Float Defined by 
units resource Current value of the luminosity sensor

5601 Min Measured 
Value R Float 0–100 % Minimum measured value since port ON or reset

5602 Max Measured 
Value R Float sec Maximum measured value since port ON or reset

5605 Reset Min and 
Max Values E Opaque Reset min and max measured values to current value 

5701 Sensor Units R String Type of sensor units, e.g., "lx" for Lux

Light luminance sensor LWM2M payload example (human readable contents of the binary TLV):

[URI-Path: /3301/0]    	  // CoAP Path-Identifier of the sensor object with the ID 3301 and instance 0

[Lightweight M2M TLV]:

- 5700: 250		  // Luminance is 250 Lux		  - value of resource 5700

- 5601: 27			   // Minimum value was 27 Lux		  - value of resource 5601

- 5602: 410		  // Minimum value was 410 Lux		  - value of resource 5602

- 5701: “lx”		  // Measurement unit is Lux		  - value of resource 5701

Table 5: Example of the definition of a luminance sensor object and resources (object URN: urn:oma:lwm2m:ext:3301)
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Fig. 11: Example of a sensor/actuator communication sequence managing a smart light device via OMA LWM2M/CoAP

The sensor/actuator LWM2M control flow (using the underlying CoAP protocol) may look like the following sequence:

In summary, it can easily be seen that:

nn LWM2M does not introduce any header overhead to the underlying CoAP protocol.
nn LWM2M-specific header and payload values are very lightweight and usually coded as binary (JSON and text payloads are optional).

Therefore, in the overhead and traffic analysis, we do not need to specifically separate CoAP and LWM2M. 

Note, however, that whereas LWM2M uses mostly binary payload and headers (options), even for text payloads such as JSON, the resources and values are 
coded as integers. CoAP generally does not limit the formats, which can contain textual URI paths and text-based payloads, such as JSON and XML.
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CoAP over NIDD
+44 bytesStart DATACoAP
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DATAMQTTIP TCP

MQTT AND COAP TRAFFIC ANALYSIS
Packet overhead

The basic header structure and length for both MQTT and CoAP messages are very similar and lightweight. While CoAP requires a minimum of 4 
bytes of headers, including the MessageID, the MQTT NOTIFY control packet also requires a minimum total of headers of 4 bytes (2 bytes for the 
fixed header and 2 bytes for the Packet Identifier). For all protocols, MQTT topic and CoAP URIs are considered to belong to the payload.

MQTT requires an ordered lossless packet delivery and relies on the TCP as the underlying transport.2 User Datagram Protocol (UDP) and other 
connectionless network transports, such as NB-IoT, are not suitable for MQTT due to the possibility of data loss and packet re-ordering. Therefore, 
using MQTT creates packet overhead from both IP and TCP protocols.

CoAP, on the other hand, is designed to use UDP transport, does not require lossless and ordered delivery, and provides higher protocol level 
fragmentation and flow controls. CoAP can be seamlessly deployed on any datagram transport, such as UDP, SMS, and NB-IoT (including NIDD).

MQTT involves complete packet overhead of TCP/IP packets (20 byte minimum for IPv4 headers and 40 bytes for IPv6). The TCP layer requires a 
minimum of 24 bytes for the first two handshake messages and 20 bytes for the final ACK. Plus, teardown requires four messages with a minimum of 
20 bytes each. Additionally, each TCP ACK will contribute an additional 20 bytes. In contrast, UDP packets only have a total of eight bytes each. When 
CoAP/LWM2M is deployed over the NIDD transport, the UDP/IP stack is completely eliminated, providing more space for the payload data (Fig. 13).

Considering that in most cases each data transmission (e.g., MQTT NOTIFY control packet) requires a TCP ACK (20 bytes), the CoAP/LWM2M 
savings will be even higher.

Fig. 12: Comparison of MQTT and CoAP messaging models

Fig. 13: Header overhead for IoT protocols over NB-IoT
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Transmission overhead

Each TCP connection requires a three-way 
handshake with a total of three messages and 
approximately 130 bytes, whereas teardown 
requires four messages with a total of 160 
bytes. Additionally, each MQTT packet will 
be followed by a TCP ACK (20 bytes each).

MQTT initially requires the client to initiate 
a connection to the MQTT broker with two 
messages: PUBLISH and PUBACK. After the 
MQTT connection has been established, the 
client can publish data by sending PUBLISH 
messages to the server. MQTT has three QoS 
levels, and the most typical QoS1 (at least 
once delivery) for reliable transmission will 
acknowledge each data publication with the 
PUBACK MQTT control packet.

The overall sequence with the overhead 
budget to send one piece of data is shown 
on Fig. 14. If data reporting is infrequent 
and requires TCP and MQTT to reestablish 
connections each time, then the relative 
overhead becomes huge for small data 
payload. For example, the estimated 

minimum overhead will be 352 bytes 
(not counting MQTT PUBLISH/PUBACK 
control packets), which would be more 
than 700 percent higher relative to the 50 
byte payload. Clearly, this would be very 
expensive for applications where devices 
sleep most of the time, then wake up to 
report small payload, and go to sleep again. 
Additionally, MQTT provides a mechanism to 
keep the TCP connection alive. However, the 
keep-alive packets are to be initiated by the 
client, which will require the devices to wake 
up just for the sake of sending the keep-alive 
packet.

CoAP/LWM2M, on the other hand (Fig. 15), 
does not require any connection or session 
setup on the TCP/IP level. LWM2M provides a 
registration interface that requires the device 
client to register with the server. This will 
only require two CoAP messages (i.e., UDP 
datagrams). In addition, the server needs to 
send the first request to start observations, 
after which the client starts sending 
notifications asynchronously. LWM2M also 
mandates the acknowledgments (CoAP 
confirmable mode where a CoAP CON 

message is followed by the CoAP ACK 
message) for all LWM2M operations. It is not 
mandated for the Notify (LWM2M information 
reporting interface) operations but is highly 
recommended since NB-IoT does not prevent 
packet loss.

This leads to a very light transmission 
overhead for the CoAP data, even accounting 
for the registration and deregistration, for a 
total of approximately 20 bytes. Additionally, 
the client is not required to deregister as 
soon as it wakes up before the registration 
lifetime expires.

Experimental measurement of various 
application data transmission protocols over 
live NB-IoT network in various conditions 
is presented in Fig. 16. For good network 
conditions with low latency and low packet 
loss, all connectionless transports (raw 
UDP and CoAP) require only one message 
transmission, and the payload overhead 
is very low due to the CoAP headers. The 
overhead for the MQTT/TCP/IP stack would 
be approximately 10 times higher due to TCP 
and MQTT handshakes and ACKs. 

Fig. 14: MQTT/TCP single notification round-trip data, no TLS, no keep-alive, QoS1 messages: 312 bytes registration overhead
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With degraded radio conditions and higher packet loss, connectionless transport overhead remains the same, but packets now start to get lost. 
CoAP overhead increases due to the increased number of retransmissions; however, the data does not get lost due to the CoAP confirmable 
message type mechanism. Overhead for MQTT/TCP would slightly increase due to the need to retransmit packets.

Overall, MQTT/TCP traffic requires approximately 10x more transactions and the data overhead is approximately 100x higher compared to the 
CoAP/UDP traffic for the 5-byte payload (Fig. 16).

Fig. 15: CoAP single notification round-trip data, no TLS, CON messages: 20 bytes registration overhead

Fig. 16: Application-layer payload and transaction summary in live NB-IoT network – 5-byte payload
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CONCLUSIONS AND RECOMMENDATIONS
Both NB-IoT and CoAP have been designed 
to meet the requirements of resource-
constrained IoT devices communicating over 
constrained transmission channels. They 
seamlessly complement each other for both 
IP- and non-IP data delivery.

LWM2M is based on CoAP and does not 
introduce significant overhead due to the 
LWM2M interface and data models. LWM2M 
inherits all the best characteristics of CoAP 
while adding lightweight efficient binary 
payload and path representation. It is ideally 
suited for NB-IoT, especially for applications 
where both data transmission and device 
management functionalities are required.

We offer the following recommendations 
when selecting application-level data 
transport protocols for IoT solutions:

nn CoAP/LWM2M is the preferred 
method for IP data transmission over 
NB-IoT networks.

nn CoAP/LWM2M over NIDD offers supe-
rior transmission performance for both 
network capacity and IoT solutions. It 
can provide from 224 to 1,157 percent 
higher payload efficiency compared to 
the TCP/IP-based MQTT.

nn CoAP can be used as a standalone 
transport over NB-IoT if the require-
ments for data transmission are signifi-
cantly different than the requirements 
for data management, and the applica-
tion is trying to avoid the overhead of 
additional LWM2M features.

nn We do not recommend using MQTT 
over NB-IoT networks due to very high 
overhead and increased number of 
data transactions.

nn MQTT is appropriate for relatively 
long-standing MQTT/TCP/IP con-
nections that transmit relatively high 
volumes of data (e.g., telematics appli-
cations). For IoT solutions that require 
MQTT transport, other types of radio 
technologies, such as LTE, should be 
considered.
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