
1

IoT Solution Developer Protocols Guide

NARROWBAND
IoT SOLUTION
DEVELOPER
PROTOCOLS
GUIDE

2

IoT Solution Developer Protocols Guide

Built upon standards established by the
3rd Generation Partnership Project (3GPP),
Narrowband IoT (NB-IoT) cellular networks
now provide cost-efficient access to a massive
number of resource-constrained IoT devices
via mobile radio access networks. To take full
advantage of NB-IoT, IoT solution developers
need to understand the capabilities and
constraints of the NB-IoT data communication.

Most IoT solution providers have a
background in designing web or enterprise
applications and are intimately familiar
with the web protocol stack. Optimized IoT
applications, however, require a specialized
application-level data transport protocol
and an IoT-centric communications stack.

For devices operating in remote locations,
Message Queuing Telemetry Transport
(MQTT) is often suggested as the preferred
messaging protocol. MQTT, however, relies on
the TCP/IP stack as the underlying transport,
and TCP is suboptimal for connecting over
mobile networks.

The Internet Engineering Task Force (IETF)
developed the Constrained Application
Protocol (CoAP) as an extremely lightweight
communications protocol stack suitable
for resource-constrained, remote devices.
CoAP evolves and streamlines the web
Representational State Transfer (REST)-ful
model inherent in the HTTP to make it as
efficient and lightweight as possible.

The Open Mobile Alliance (OMA) uses CoAP
in the lightweight machine-to-machine
(LWM2M) IoT device management standard.
LWM2M enables remote management and
control of IoT devices using a streamlined
managed objects model and provides
interfaces for securely monitoring and
administering devices.

In this document, we highlight the main
characteristics of IoT protocols and assess
their suitability for the deployment over NB-
IoT mobile networks both over IP and without
IP using Non-IP Data Delivery (NIDD).

To deliver on its massive transformative potential, the Internet of Things needs to interconnect
an enormous number of devices, services, and applications over data networks as efficiently
as possible. Given the ever-growing diversity of devices—from resource-constrained sensors
to sophisticated smart phones—broad range of environments, and myriad evolving use cases,
building viable IoT solutions would be practically impossible if not for the decades of groundwork
that have gone into creating messaging protocols for the web and mobile communications.

INTRODUCTION

3

IoT Solution Developer Protocols Guide

The Internet of Things is growing to
encompass an enormous range of
applications and devices. It is critical for the
success of an IoT solution that not only the
correct devices are used with the appropriate
communications technologies, but also that
the characteristics and patterns of the device
data reporting, such as frequency, volume of
data, and required upstream and downstream
bandwidth, are accounted for. Access to
power and the amount of electricity consumed
by devices are also crucial considerations.

Fig. 1 presents an example of such
classification mapping the typical areas of IoT
applications, 3GPP-defined device classes,

and main characteristics of the related
mobile data technologies. Successful IoT
solutions require that the correct devices are
used with the appropriate communications
technologies, and that the characteristics and
patterns of the device data reporting, such as
frequency and volume of data are accounted
and planned for in the solution design phase.

NB-IoT is a recent evolution of the 3GPP LTE
standard that provides efficient deployment
of resource-constrained, low-cost IoT devices
on contemporary mobile networks. NB-IoT
defines communication channels with limited
characteristics suitable for constrained, low-
maintenance devices that offer long battery

life and cost-efficiency. The constrained
nature of NB-IoT devices and networks calls
for careful planning of the communications
patterns and higher-level application data
communication protocol.

Fig. 2 presents characteristics of the NB-IoT
data communication and recommendations
for appropriate use of devices,
communication patterns, and suitable
classes of IoT applications. The rest of this
paper explores the MQTT and CoAP/LWM2M
messaging protocols and provides analysis
and recommendations on the appropriate
uses for each.

Fig. 1: Emerging IoT solutions and devices

Cat-4
DL:~150Mbps
UL:~50Mbps

VoLTE

Throughput

Low
to mid
latency

Mid
to high
latency

Connected vehicles

Connected
elevators

Connected
health care

Heart
monitors
Activity

trackers

Smart
meters

Industrial
sensors

Industrial
monitoring

Smart
parking

Bicycle
sharing

Low latency
trackers

Routers
Video surveillance

Fleet management Smart watch

Asset trackers

Transaction
battery life

Number of transactions for Cat-1 and above is already accounted for per current capacity calculations

Up to 1/hr; 24/day
Battery life: 3-5 years

Up to 2/day
Battery life: >10 years

Up to 10/hr; 240/day
Battery life: Days

>240/day
Battery life: up to 1 day

Up to 4/hr; 96/day
Battery life: Months

Cat-1
DL:~10Mbps
UL:~5Mbps

VoLTE

Cat-M1
DL:~300Kbps
UL:~375Kbps

VoLTE

Cat-NB
DL:~20Kbps
UL:~60Kbps

No voice

IoT DEVICES AND ECOSYSTEM

4

IoT Solution Developer Protocols Guide

Fig. 2: Recommended bandwidth and payload characteristics for NB-IoT and LTE IoT devices

WHAT IS NB-IoT?
NB-IoT is a mobile access technology targeted
at low-cost support for the massive deployment
of lightweight and constrained IoT devices.
As such, it has the characteristics of the
constrained network; specifically, its effective
bandwidth in one sector is limited to 226.7
Kbps peak, and the overlaying protocols must
efficiently address the low-level fragmentation.
The protocol targets latency-insensitive
applications. While NB-IoT is designed to
allow less than 10 sec latency, typical NB-IoT
devices and applications tolerate from 10 sec
to more than 100 sec of latency. The NB-IoT
devices suitable for applications that require
long battery life (e.g., 10+ years) and where the
devices are expected to transmit an average
200 bytes per day.1

NB-IoT can be used in both IP and NIDD modes.
The data transmission cost is essentially the
same as it is applied to gross transmitted
data, not to the effective payload. Application
developers need to be very efficient in their

data transmission protocols and minimize the
overhead of the data to be transmitted over
cellular networks.

The new OMA LWM2M 1.1 protocol provides
the necessary transport binding for deploying
over the NB-IoT access networks. It is based on
the streamlined CoAP and contains necessary
semantics for performing device management
and ensuring data transmission via the
information-reporting interface.

The New NB-IoT Hourglass
NB-IoT presents developers with the
challenge of fitting the IoT communication
from constrained devices into a constrained
communication channel with:

nn Narrow bandwidth
nn Low occurrence of data transactions
nn Very small payloads
nn High to very high latency
nn Devices in sleep mode most of the time

Developers need to eliminate an unnecessary
overhead introduced by the IP, TCP, and TLS.
The IoT device classes targeted by cellular
IoT and NB-IoT technologies will typically
transmit from a single byte to tens of bytes
in one payload. The devices will be in sleep
mode most of the time, and there are strong
limitations imposed by the network on this
highly streamlined data transmission channel.
Typically, the bandwidth will be around 10
kbps, and the payload has to fit in the radio
frame. Devices are supposed to transmit very
infrequently—at most, several times per hour,
and the transmission latency may be very
high, from 10 sec. to 100 sec.

These limitations are challenging for an
industry used to the relative freedom
of modern high-end communications
channels. Cellular LTE networks deliver 10+
Mbps bandwidth with latency measured in
milliseconds. Plus, reliable, long-lived TCP
connections are always available. With the

Functionality NB-IoT Non-IP/IP LTE

Peak Data Rates DN: 15-20 Kbps; Up: 20-25 Kbps ~ 300 Kbps

SMS Yes Yes

Mobility Idle mobility Yes

MQTT-Data No Yes

CoAP Yes Yes

LwM2M - Device Mgmt Non-IP: Device Management, IP: SW updates Yes

LwM2M - Data Yes Yes

Advantage Deeper in-building coverage Higher data rates, mobility voice

Device Profile Low Med High

Connections per day Up to 2 Up to 48 (every 30
min) Up to 240 (every 6 min) No limit

Proj. Message size, bytes 50 150 350 1500

Size of user data
Per day (bytes) max

100 bytes per day
0.036 bytes per day

4800 bytes per day
1.7 Mb per year

36000 bytes per day
~13 Mb per year 750,000

Acceptable latency, s 20 to 60 10 to 20 < 10 Low

Location No Yes Yes Yes

Mobility Stationary Mobile Mobile Mobile

Typical Applications Sensors, Metering:
Water, Gas. Air

Smart Infrastructure:
City Lighting, Parking

Limited Trackers:
Smart Bicycle, Livestock

Real Time Trackers: Kids, Pets
Wearables, Connected Transport

5

IoT Solution Developer Protocols Guide

IoT Application

MQTT

TLS

TCP

IP

Ethernet, WiFi, LTE

Copper, Fiber, Radio

effective payload on the order of magnitude of
bytes, the overhead introduced by the TCP/IP
stack becomes significant and can be 10x to
100x relative to actual payload.

NB-IoT allows constrained devices to
overcome this limitation by introducing
NIDD and eliminating the TCP/IP stack

completely. However, this poses a new
challenge for application developers,
requiring them to address the need to
manage payload fragmentation, in-order
delivery, and flow control.

The combination of NB-IoT with the
technologies in the LWM2M 1.1 stack

effectively addresses those challenges and
allows smooth transition to the constrained
NB-IoT stack. Moreover, not only does it
deliver data efficiently, but LWM2M’s device
management functionality enables the
devices themselves to be managed remotely—
allowing for low-maintenance, long-battery-
life device deployments and solutions.

In this model, the CoAP becomes the new spanning technology—the waist of the new NB-IoT hourglass model. With built-in congestion control,
block-wise transfer fragmentation handling mechanism, efficient coding of the headers (options) and payload, and the ability to effectively
transport agnostically, CoAP can be reused for both IP- and non-IP-based NB-IoT deployments.

Fig. 4: MQTT protocol stack and baseline sequence, QoS 1 and QoS 2 messages

Fig. 3: Narrowband IoT hourglass model

Web Model: 1000s of bytes

WWW, LwM2M, IoT, ...

HTTP, WS, MQTT, CoAP

TLS, DTLS

TCP, UDP

IP

Ethernet, WiFi, LTE

Copper, Fiber, Radio

LwM2M

CoAP

DTLS

UDP NIDD

IP

NB-IoT

Cellular Radio

Efficient Payload
SenML, CBOR ...

Constrained IoT Model: 1s to 100s of bytes

6

IoT Solution Developer Protocols Guide

According to the Eclipse 2018 IoT Developer
Survey, MQTT today is the leading messaging
protocol in use today, followed by the group of
web protocols, including HTTP 1.1, HTTP/2, and
WebSocket. CoAP is the only leading UDP-
based protocol.

It is worth noting that the popularity of the
proprietary in-house protocol implementations
is declining as developers realize that
standardized, reliable data protocols with
reasonable messaging or REST semantics are
required to deliver interoperable performance
for IoT solutions.

The web-based protocols are primarily used
for communication on browser-based clients,
which typically run on relatively high-capability
devices, such as smartphones that use relatively
high-bandwidth communications channels
(e.g., LTE). However, the two protocols most
suitable for mass IoT market are MQTT over

DATA COMMUNICATION PROTOCOLS FOR THE
INTERNET OF THINGS

Fig. 5: Popularity of IoT data transport protocols in 20182

MQTT

TCP/
WEB

TCP

UDP

HTTP

WebSockets

HTTP/2

CoAP

AMQP (0.9 and/or 1.0)

In-house/proprietary

0.70.60.50.40.30.20.10

62.61%

54.10%

34.95%

24.92%

22.49%

18.24%

12.77%

TCP and LWM2M and CoAP over UDP. For all
applications and devices deployed over NB-
IoT, CoAP/LWM2M is recommended.

Both HTTP and MQTT require TCP/IP as the
underlying transport and are not suitable for
NB-IoT NIDD communication channels. In
contrast, CoAP itself and CoAP-based LWM2M
use UDP and can be deployed over NIDD since
the only requirement is that the CoAP packets
fit into a datagram. MQTT is the only protocol
that fully supports the publish-subscribe
messaging model, whereas HTTP and CoAP
are REST based.

CoAP can be seen as the evolution of HTTP for
resource-constrained devices and networks,
and reuses some HTTP verbs, such as GET,
POST, PUT, and DELETE. CoAP and LWM2M
allow developers to use the observe/notify
pattern modeled after the software observer
design pattern. MQTT does not specify the
payload format. While CoAP follows the
web model similar to the HTTP content-
type, LWM2M defines a specific format for
representing objects and resources.

Even though CoAP requires that a single
CoAP/LWM2M packet must fit into a UDP
datagram, a mechanism has been developed
to handle fragmentation and transfer large
data on the application level.3

As we will demonstrate further in this
document, MQTT protocol is most suitable
for relatively unconstrained applications
where long-standing connections and large
data payloads on the order of magnitude of
hundreds to thousands of bytes are expected.
CoAP and LWM2M are better suited for
resource-constrained IoT applications and
devices, where the payloads are very small.

MQTT
MQTT is the lightweight application layer
messaging protocol designed for the relatively
resource-constrained devices used for IoT
applications.2 It requires reliable, lossless,
in-order delivery of packets, and relies on the
TCP/IP-based reliability and ordered delivery.
However, MQTT requires much less overhead
than HTTP.

MQTT uses a topic-based, publish-subscribe
model. Clients willing to transmit data connect
to MQTT servers called message brokers
by issuing the CONNECT command. If the
connection is accepted, an MQTT broker
replies with the CONNACK command. After
the connection is established, data can flow in
both directions.

Clients send data to servers in the PUBLISH
messages associated to a particular topic.
Clients willing to receive messages from
message brokers indicate so by issuing a
SUBSCRIBE command to the MQTT message
broker, indicating a particular topic. As soon
as publishing clients PUBLISH messages, all
subscribers to the same topic start receiving
notifications (PUBLISH messages) from the
message broker.

7

IoT Solution Developer Protocols Guide

Request / Response Sub-layer:
RESTful interaction

GET, POST, PUT, DELETE, URIs
Internet Media Types: JSON, XML, octet-stream

De-duplication, retransmissions,
de-fragmentation

Any Datagram-based transport:
UDP, NIDD, SMS

Message Sub-layer: Reliability

DTLS

CoAP

UDP

Non-IP Data
Delivery

Fig. 6: CoAP messaging model and functional layers

Table 1: MQTT quality-of-service levels

CoAP
CoAP has been specifically designed by
the IETF to meet the requirements of the
constrained devices and communications
channels. It is based on the REST
architecture following the synchronous
request-response HTTP model. CoAP uses
the GET, PUT, POST, and DELETE methods
and response codes similar to, but not
exactly like, HTTP. Therefore, it is easy to
map CoAP traffic from devices to the RESTful
API logic.

CoAP uses the resource model mapped to the

Universal Resource Identifier (URI) instead
of MQTT topics. However, there is a similarity
between the CoAP URIs and MQTT topics.
For example, sensor devices publishing
their sensor information to a server could be
described in the following manner:

nn CoAP sensor publishing to CoAP
server: URI: coap://devices/sensors/
temperature

nn MQTT client publishing to a sensor
queue on the broker: topic: “/devices/
sensors/temperature”

The CoAP message format is compact and

lightweight with only 4-byte fixed header
encoding the GET, POST, PUT, DELETE
methods and response codes, type of
message (confirmable or nonconfirmable),
and MessageID used to correlate requests with
responses (ACKs).

Variable token is used for longer-term session

MQTT message reliability (on top of the TCP) is assured by the three quality-of-service (QoS) levels:

QoS Level Model Description

0 At most once Unreliable level – Message is delivered without duplication; no acknowledgment is required

1 At least once Reliable level – Message is delivered at least once with possible duplications; acknowledgment is required

2 Exactly once Reliable without duplications – MQTT uses four-way handshake mechanism to ensure that the message is
delivered without duplications

Fig. 7: CoAP message format

4 byte fixed header Methods: GET, POST, PUT, DELETE
Type: CON / NON, MessageID

Long term session ID for Observation /
Notifications

URI-Host, URI-Path, ..., Content-Format ...

Payload: JSON, XML, CBOR, octet-stream...

0-8 bytes variable Token

variable: Options

CoAP
Headers

Payload

Marker: 0xFF var. Payload ...

8

IoT Solution Developer Protocols Guide

Fig. 8: CoAP resource observations with confirmable notifications. Illustration courtesy of K. Hartke, Universitaet Bremen TZI.

semantics (e.g., matching notifications to
a particular observation request). Variable
options encode URI, content-format, and
information usually transmitted in the HTTP
headers, followed by the variable payload,
which can be any internet format specified
by the content-format options, e.g., JSON,
XML, or octet-stream. CoAP is extremely
lightweight with only a 4-byte mandatory
header. While MQTT specifies only 2 bytes
for the fixed header, in reality, it has to always
carry another 2-byte MessageID for any MQTT
PUBLISH request.

CoAP’s request-response mode is
asynchronous and nonblocking. A client does
not have to wait for the response to initiate
another request, and CoAP responses can also
carry data so that no round trips are wasted.

The main difference between CoAP and
MQTT results from the MQTT requirement
to run on the reliable, lossless, in-order,
byte-stream delivery transport, which
effectively mandates the TCP/IP stack.

CoAP, on the other hand, runs on top of UDP
and provides its own reliability mechanism
using confirmable and nonconfirmable
message types, and the block-wise transfer
fragmentation mechanism.

Transport layer security for CoAP is
seamlessly provided in the Datagram
Transport Layer Security (DTLS) protocol.
CoAP provides its own reliability, flow control,
and fragmentation handling layers, and the
only hard requirement is that a CoAP message
fits into an underlying protocol’s datagram,
meaning it can easily and seamlessly be
deployed on any datagram-based transport,
such as SMS or NB-IoT NIDD.

Another remarkable feature of CoAP is
the ability to perform asynchronous push
observe/notify requests, which are modeled
after the observer software pattern. A server
initiates a request to observe particular
resources on the CoAP client. The client
remembers the request and notifies the
server each time the state of the observed

resources change.

CoAP provides its own reliability mechanism
using confirmable messages and
nonconfirmable messages. Confirmable
messages have the type “0” (CON), require
an acknowledgment (message type 2 - ACK),
and the client will continue resending it until
it receives the ACK message from the server
or it times out. Nonconfirmable messages
have the type “v1” (NON) and the client will
not wait for the ACK. CoAP ACK messages
can carry useful payload data and themselves
do not require separate ACKs. The CoAP
block-wise transfer mechanism ensures
reliable transmission of large-size payloads by
splitting it in chunks that are guaranteed to fit
into the lower-level datagrams (Fig. 9).

Whereas CoAP does not provide an explicit
quality-of-service model (unlike MQTT), the
confirmable/nonconfirmable message types
allow it to loosely map to the MQTT QoS
semantics as follows:

Device Resource State

Reported Device Resource State

Device (CoAP Server)

GET Observe Notify

Application (CoAP Client)

Notify Notify Retransmission
X

9

IoT Solution Developer Protocols Guide

Fig. 9: CoAP fragmentation handling with block-wise transfer for large-size payload

Table 2: CoAP and MQTT QoS mapping

CoAP message type MQTT QoS level Description

NON – Nonconfirmable 0 – At most once Unreliable delivery; messages may be lost

CON – Confirmable 1 – At least once Reliable delivery; messages will not be lost, but may be duplicated

4 byte fixed header Methods: GET, POST, PUT, DELETE
Type: CON / NON, MessageID

Long term session ID for Observation /
Notifications

URI-Path: 1/0/1, URI-Query: ep=2abf23...

Payload: application/vnd.oma.lwm2m+tlv

0-8 bytes variable Token

variable: Options

CoAP
Headers

LwM2M
Payload

Marker: 0xFF var. Payload ...

Fig 10: LWM2M fields mapped on CoAP message format

OMA Lightweight M2M (LWM2M)
Defined by the Open Mobile Alliance, LWM2M is built on the CoAP protocol, creates a specific CoAP profile, adds the object model for data
representation on devices, and enables efficient binary payload.

10

IoT Solution Developer Protocols Guide

Fig. 10 shows how LWM2M reuses CoAP headers and maps all LWM2M-specific information into the LWM2M payload (URI parameters, specific
LWM2M content formats, etc.). Everything else is encoded in the payload in an efficient binary manner.

LWM2M 1.15 mandates plain text, opaque binary, and CoRE Link data formats for client implementations to ensure on-the-wire data transmission efficiency
and recommends implementing one of the two new data formats based on Sensor Markup Language (SenML) using either JSON or Concise Binary Object
Representation (CBOR). Previously mandatory in LWM2M 1.0 type-length-value (TLV) and optional, JSON is not recommended for use in LWM2M 1.1.

Data format IANA media type CoAP content-format Client mandatory

Plain text Text/plain 0 1.0 optional, 1.1 mandatory

CoRE Link Application/link-format 40 1.0 optional, 1.1 mandatory

Opaque Application/octet-stream 42 1.0 mandatory for firmware downloads, 1.1 mandatory

TLV Application/vnd.oma.lwn2m+tlv 11542 1.0 mandatory, 1.1 not recommended

JSON Application/vnd.oma.lwm2m+json 11543 1.0 optional, 1.1 not recommended

SenML JSON Application/senml+json 110 1.0 N/A, 1.1 recommended

SenML CBOR Application/senml+cbor 112 1.0 N/A, 1.1 recommended

LWM2M uses a flat object/resource model to describe sensor/actuator model for devices, where a client device contains data structures mapped
to the device architecture and described by an object definition. Each object may have zero or more instances, and each instance contains
resources, which can contain values and be readable, writable, or executable. LWM2M defines a set of objects; however, the objects may be
defined outside of the LWM2M specification and used to model sensors and actuators of a device.

Below is a simple example of a smart lighting controller containing sensor and switch/dimmer objects:

ID Name Operations Type Range Units Description

5850 On/Off RW Boolean Turn the light on or off

5851 Dimmer RW Integer 0–100 % Light dimmer setting

5852 On Time RW Integer sec Time in seconds that the device has been on

5750 Application Type RW String Application type, e.g., “Smart Dimmer”

Table 3: LWM2M 1.1 data formats

Table 4: Example of the definition of a smart switch actuator object and resources (object URN: urn:oma:lwm2m:ext:3306)

11

IoT Solution Developer Protocols Guide

Related LWM2M/CoAP payload could then be:

Light dimmer actuator LWM2M payload example (human readable contents of the binary TLV):

[URI-Path: /3306/0] 	 // CoAP Path-Identifier of the Actuator object with the ID 3306 and instance 0

[Lightweight M2M TLV]:

 - 5850: 1			 // Light is on			 - value of resource 5850

 - 5851: 73			 // Dimmer is at 73% setting		 - value of resource 5851

 - 5852: 1800		 // Light has been on for 30 minutes	 - value of resource 5852

 - 5750: “Smart Dimmer”	 // Application “Smart Dimmer” 	 - value of resource 5750

ID Name Operations Type Range Units Description

5700 Sensor Value R Float Defined by
units resource Current value of the luminosity sensor

5601 Min Measured
Value R Float 0–100 % Minimum measured value since port ON or reset

5602 Max Measured
Value R Float sec Maximum measured value since port ON or reset

5605 Reset Min and
Max Values E Opaque Reset min and max measured values to current value

5701 Sensor Units R String Type of sensor units, e.g., "lx" for Lux

Light luminance sensor LWM2M payload example (human readable contents of the binary TLV):

[URI-Path: /3301/0] 	 // CoAP Path-Identifier of the sensor object with the ID 3301 and instance 0

[Lightweight M2M TLV]:

- 5700: 250		 // Luminance is 250 Lux		 - value of resource 5700

- 5601: 27			 // Minimum value was 27 Lux		 - value of resource 5601

- 5602: 410		 // Minimum value was 410 Lux		 - value of resource 5602

- 5701: “lx”		 // Measurement unit is Lux		 - value of resource 5701

Table 5: Example of the definition of a luminance sensor object and resources (object URN: urn:oma:lwm2m:ext:3301)

12

IoT Solution Developer Protocols Guide

Fig. 11: Example of a sensor/actuator communication sequence managing a smart light device via OMA LWM2M/CoAP

The sensor/actuator LWM2M control flow (using the underlying CoAP protocol) may look like the following sequence:

In summary, it can easily be seen that:

nn LWM2M does not introduce any header overhead to the underlying CoAP protocol.
nn LWM2M-specific header and payload values are very lightweight and usually coded as binary (JSON and text payloads are optional).

Therefore, in the overhead and traffic analysis, we do not need to specifically separate CoAP and LWM2M.

Note, however, that whereas LWM2M uses mostly binary payload and headers (options), even for text payloads such as JSON, the resources and values are
coded as integers. CoAP generally does not limit the formats, which can contain textual URI paths and text-based payloads, such as JSON and XML.

13

IoT Solution Developer Protocols Guide

CoAP over NIDD
+44 bytesStart DATACoAP

NB-IoT
LayerTransport BlockNAC RLC NAS CRCPadding

CoAP over UDP/IP
+16 bytes

Start

DATACoAPIP

MQTT over TCP/IP
Start

DATAMQTTIP TCP

MQTT AND COAP TRAFFIC ANALYSIS
Packet overhead

The basic header structure and length for both MQTT and CoAP messages are very similar and lightweight. While CoAP requires a minimum of 4
bytes of headers, including the MessageID, the MQTT NOTIFY control packet also requires a minimum total of headers of 4 bytes (2 bytes for the
fixed header and 2 bytes for the Packet Identifier). For all protocols, MQTT topic and CoAP URIs are considered to belong to the payload.

MQTT requires an ordered lossless packet delivery and relies on the TCP as the underlying transport.2 User Datagram Protocol (UDP) and other
connectionless network transports, such as NB-IoT, are not suitable for MQTT due to the possibility of data loss and packet re-ordering. Therefore,
using MQTT creates packet overhead from both IP and TCP protocols.

CoAP, on the other hand, is designed to use UDP transport, does not require lossless and ordered delivery, and provides higher protocol level
fragmentation and flow controls. CoAP can be seamlessly deployed on any datagram transport, such as UDP, SMS, and NB-IoT (including NIDD).

MQTT involves complete packet overhead of TCP/IP packets (20 byte minimum for IPv4 headers and 40 bytes for IPv6). The TCP layer requires a
minimum of 24 bytes for the first two handshake messages and 20 bytes for the final ACK. Plus, teardown requires four messages with a minimum of
20 bytes each. Additionally, each TCP ACK will contribute an additional 20 bytes. In contrast, UDP packets only have a total of eight bytes each. When
CoAP/LWM2M is deployed over the NIDD transport, the UDP/IP stack is completely eliminated, providing more space for the payload data (Fig. 13).

Considering that in most cases each data transmission (e.g., MQTT NOTIFY control packet) requires a TCP ACK (20 bytes), the CoAP/LWM2M
savings will be even higher.

Fig. 12: Comparison of MQTT and CoAP messaging models

Fig. 13: Header overhead for IoT protocols over NB-IoT

MQTT Messaging Model

MQTT
Requests / Acks

MQTT Control Packets

TCP

IP

Application

CoAP Messaging Model

CoAP
Requests / Responses

Messages

UDP
NIDD

IP

Application

LwM2M Messaging Model

CoAP
LwM2M Operations

Messages

UDP
NIDD

IP

LwM2M

14

IoT Solution Developer Protocols Guide

Transmission overhead

Each TCP connection requires a three-way
handshake with a total of three messages and
approximately 130 bytes, whereas teardown
requires four messages with a total of 160
bytes. Additionally, each MQTT packet will
be followed by a TCP ACK (20 bytes each).

MQTT initially requires the client to initiate
a connection to the MQTT broker with two
messages: PUBLISH and PUBACK. After the
MQTT connection has been established, the
client can publish data by sending PUBLISH
messages to the server. MQTT has three QoS
levels, and the most typical QoS1 (at least
once delivery) for reliable transmission will
acknowledge each data publication with the
PUBACK MQTT control packet.

The overall sequence with the overhead
budget to send one piece of data is shown
on Fig. 14. If data reporting is infrequent
and requires TCP and MQTT to reestablish
connections each time, then the relative
overhead becomes huge for small data
payload. For example, the estimated

minimum overhead will be 352 bytes
(not counting MQTT PUBLISH/PUBACK
control packets), which would be more
than 700 percent higher relative to the 50
byte payload. Clearly, this would be very
expensive for applications where devices
sleep most of the time, then wake up to
report small payload, and go to sleep again.
Additionally, MQTT provides a mechanism to
keep the TCP connection alive. However, the
keep-alive packets are to be initiated by the
client, which will require the devices to wake
up just for the sake of sending the keep-alive
packet.

CoAP/LWM2M, on the other hand (Fig. 15),
does not require any connection or session
setup on the TCP/IP level. LWM2M provides a
registration interface that requires the device
client to register with the server. This will
only require two CoAP messages (i.e., UDP
datagrams). In addition, the server needs to
send the first request to start observations,
after which the client starts sending
notifications asynchronously. LWM2M also
mandates the acknowledgments (CoAP
confirmable mode where a CoAP CON

message is followed by the CoAP ACK
message) for all LWM2M operations. It is not
mandated for the Notify (LWM2M information
reporting interface) operations but is highly
recommended since NB-IoT does not prevent
packet loss.

This leads to a very light transmission
overhead for the CoAP data, even accounting
for the registration and deregistration, for a
total of approximately 20 bytes. Additionally,
the client is not required to deregister as
soon as it wakes up before the registration
lifetime expires.

Experimental measurement of various
application data transmission protocols over
live NB-IoT network in various conditions
is presented in Fig. 16. For good network
conditions with low latency and low packet
loss, all connectionless transports (raw
UDP and CoAP) require only one message
transmission, and the payload overhead
is very low due to the CoAP headers. The
overhead for the MQTT/TCP/IP stack would
be approximately 10 times higher due to TCP
and MQTT handshakes and ACKs.

Fig. 14: MQTT/TCP single notification round-trip data, no TLS, no keep-alive, QoS1 messages: 312 bytes registration overhead

15

IoT Solution Developer Protocols Guide

With degraded radio conditions and higher packet loss, connectionless transport overhead remains the same, but packets now start to get lost.
CoAP overhead increases due to the increased number of retransmissions; however, the data does not get lost due to the CoAP confirmable
message type mechanism. Overhead for MQTT/TCP would slightly increase due to the need to retransmit packets.

Overall, MQTT/TCP traffic requires approximately 10x more transactions and the data overhead is approximately 100x higher compared to the
CoAP/UDP traffic for the 5-byte payload (Fig. 16).

Fig. 15: CoAP single notification round-trip data, no TLS, CON messages: 20 bytes registration overhead

Fig. 16: Application-layer payload and transaction summary in live NB-IoT network – 5-byte payload

CEO
-110-90

CEO
-100

CEO
-120

CE2
-127

532.0

273.0

46.033.030.0
5.0

638.0

686.0

590.0

273.0

46.033.030.0
5.0

33.030.0
5.0

9.00
6.00

126.0

33.030.0
5.0

586.0

497.0

262.0

9.00

6.00

1.001.00

2.00

1.00

10.00

5.00

1.001.00

2.00

1.00

11.00

12.00

1.001.00

2.00

1.00

9.00

8.00

3.00

1.00

2.00

1.00

10.00

9.00

5.00

1.00

2.00

1.00

46.033.030.0
5.0

~10x transactions

CoAP
retransmission

add to application
overhead

Av
er

ag
e

nu
m

be
r o

f a
pp

lic
at

io
n

la
ye

r T
x

Av
er

ag
e

Tx

700

600

500

400

300

200

100

0

12

10

8

6

4

2

0

~100x payload

N
ID

D

SM
S

U
D

P

C
O

AP TC
P

M
Q

TT

N
ID

D

SM
S

U
D

P

C
O

AP TC
P

M
Q

TT

N
ID

D

SM
S

U
D

P

C
O

AP TC
P

M
Q

TT

N
ID

D

SM
S

U
D

P

C
O

AP TC
P

M
Q

TT

N
ID

D

SM
S

U
D

P

C
O

AP TC
P

M
Q

TT

Protocol

 NIDD
 SMS
 UDP
 COAP
 TCP
 MQTT

IoT Solution Developer Protocol Guide

CONCLUSIONS AND RECOMMENDATIONS
Both NB-IoT and CoAP have been designed
to meet the requirements of resource-
constrained IoT devices communicating over
constrained transmission channels. They
seamlessly complement each other for both
IP- and non-IP data delivery.

LWM2M is based on CoAP and does not
introduce significant overhead due to the
LWM2M interface and data models. LWM2M
inherits all the best characteristics of CoAP
while adding lightweight efficient binary
payload and path representation. It is ideally
suited for NB-IoT, especially for applications
where both data transmission and device
management functionalities are required.

We offer the following recommendations
when selecting application-level data
transport protocols for IoT solutions:

nn CoAP/LWM2M is the preferred
method for IP data transmission over
NB-IoT networks.

nn CoAP/LWM2M over NIDD offers supe-
rior transmission performance for both
network capacity and IoT solutions. It
can provide from 224 to 1,157 percent
higher payload efficiency compared to
the TCP/IP-based MQTT.

nn CoAP can be used as a standalone
transport over NB-IoT if the require-
ments for data transmission are signifi-
cantly different than the requirements
for data management, and the applica-
tion is trying to avoid the overhead of
additional LWM2M features.

nn We do not recommend using MQTT
over NB-IoT networks due to very high
overhead and increased number of
data transactions.

nn MQTT is appropriate for relatively
long-standing MQTT/TCP/IP con-
nections that transmit relatively high
volumes of data (e.g., telematics appli-
cations). For IoT solutions that require
MQTT transport, other types of radio
technologies, such as LTE, should be
considered.

References

1.	 Y. P. E. Wang et al., “A Primer on 3GPP Narrowband Internet of Things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117-123, Mar. 2017.

2.	 Eclipse IoT Developer Survey 2018.

3.	 IETF RFC 7959 – Block-Wise Transfers in the Constrained Application Protocol (CoAP), 2016.

4.	 MQTT version 3.1.1 OASIS Standard, Dec. 2015.

5.	 Lightweight Machine-to-Machine Technical Specification, Approved Version 1.1 – August 2018, Open Mobile Alliance.

Acknowledgments

Sergey Slovetskiy, Principal Engineer, Systems Design and Strategy

Jeff Ahmet, Principal Engineer, Technology Development & Strategy

Karthik Iyer, Principal Engineer, Device Technology

Battery life and cost savings compared to Cat-M modules and IoT plans. Coverage not available in some areas.

Contact information

For any questions or comments, please reach out to IoTDeviceManagement@T-Mobile.com.

mailto:IoTDeviceManagement%40T-Mobile.com?subject=

