
PERFORMANCE
A STUDY OF

BETWEEN FLUTTER + FIREBASE
APPLICATIONS

LOOKS&

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

Flutter
Google developed Flutter, and the first beta release
was in February 2018. By May 2018, Flutter made it to
GitHub’s top 100 repos. Google Flutter 1.0 was released
in December 2018 and was stable and ready for
production.

Flutter has been exponentially increasing in popularity
and use over the last year, as evidenced in the 200
active pull requests on GitHub (as of September 2021).
Additionally, Google Trends demonstrates there is
rising curiosity and awareness about Flutter.

As of March 2021, Flutter 2.0 is active and supports the
following platforms: Android, iOS, web, macOS, Linux,
and Windows. Here are a few features that make
Flutter a growing developer favorite.

https://github.com/flutter/flutter/pulls
https://trends.google.com/trends/explore?q=flutter,react%20native,Xamarin,NativeScript
https://joshsoftware.digital/technologies/flutter-app-development-services-and-solutions-josh-software/
https://joshsoftware.digital/technologies/flutter-app-development-services-and-solutions-josh-software/

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

#01

#03

#02

#04

Additionally, there are several ready-to-use and customizable widgets [Material and Cupertino]. This proves
useful when building a Minimum Viable Product (MVP).

Hot Reload

Developers can view changes to the code in real-time
without losing the current application state.

Developers can reuse the native codebase across
multiple platforms with minimal modifications. Apps
that target mobile, web, desktop, and embedded
devices from a single codebase can be quickly built.

Single Codebase

Testing & QA

The reduced diversity of codes speeds up the testing
and quality assurance process.

Compatibility for Advanced UI

Skia, the internal graphics engine, is used in Mozilla
Firefox, Google Chrome, and Sublime Text 3. With
internal Apple Design System elements and Material
UI components, Flutter creates structural & stylistic
elements to the layout for a seamless UI/UX across
multiple platforms.

https://joshsoftware.digital/services/testing-and-quality-assurance/
https://joshsoftware.digital/services/testing-and-quality-assurance/
https://skia.org/docs/dev/flutter/

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

2D-based UI

Eliminates interacting with a native application
counterpart

Saves time in development

Ready-to-use plugins for advanced OS features

Smooth communication between platform-native
code and Dart

Easy to implement advanced features of native-
app on Flutter

Complex UI animation is possible

No intermediate code representations or
interpretation required

Apps built directly into the machine code

Apps will be fully compiled well beforehand

Declarative API for building UI

Improves performance of the application

Ease of visual adjustments

Both the UI code, app logic, and the UI are shared

Dependence on platform-specific components
eliminated

UI is rendered by populating elements of the
application UI on canvas

Faster Time-to-Market Consistent Performance

Platform-Specific Logic Implementation

Smooth UI/UX Across Platforms

What does this add up
to?

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

FIREBASE IS A GOOGLE-BACKED APPLICATION DEVELOPMENT SOFTWARE BUILT TO CONTROL REAL-TIME,
COLLABORATIVE APPLICATIONS. THIS ALLOWS ACCESS TO A SHARED DATA STRUCTURE LEADING TO ANY
CHANGES TO THE DATA AUTOMATICALLY SYNCHRONIZED WITH THE FIREBASE CLOUD AND OTHER CLIENTS WITHIN
MILLISECONDS.

THIS ENABLES DEVELOPERS TO DEVELOP IOS, ANDROID, AND WEB APPS WHILE PROVIDING TOOLS FOR:

Firebase

Tracking analytics

Reporting and fixing app crashes

Creating marketing and product experiments

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

Free, unlimited reporting on 500 separate events

Displays data about user behavior in iOS and
Android

Improved decision-making

Enhanced performance

Cross-platform messaging tool

Free, secure end-to-end messaging

iOS, Android, and the web

Real-time crash reporter

Helps developers enhance and maintain app
quality

Monitor and debug easily

Reduces time on troubleshooting crashes

Cloud-based app-testing infrastructure

One operation to test iOS or Android apps across
devices and configurations.

Results [videos, screenshots, logs] seen in the
console

Simplifies building secure authentication systems

Enhances the sign-in and onboarding UX

Complete identity solution [supporting email and
password accounts, phone auth, as well as Google,

Facebook, GitHub, Twitter login]

Cloud-hosted NoSQL database

Enables data storage

Data sync across all users in real-time

Offline data availability

Insight into performance characteristics of iOS and
Android apps

Identify areas for improvement

Google Analytics for Firebase

Firebase Cloud Messaging

Firebase Crashlytics

Firebase Test Lab

Firebase Authentication

Firebase Realtime Database

Firebase Performance Monitoring

What does it offer?

https://firebase.google.com/products/analytics
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/products/crashlytics?gclid=EAIaIQobChMIkoaw_Z7t8gIVAtdMAh2oBgaLEAAYAiAAEgLWN_D_BwE&gclsrc=aw.ds
https://firebase.google.com/products/test-lab?gclid=EAIaIQobChMIlZ_jup_t8gIVksJMAh2VnAOVEAAYASAAEgI3GfD_BwE&gclsrc=aw.ds
https://firebase.google.com/docs/auth
https://firebase.google.com/products/realtime-database?gclid=EAIaIQobChMIs5zvm4bt8gIVnpZLBR3U0wY7EAAYASAAEgK0JPD_BwE&gclsrc=aw.ds
https://firebase.google.com/docs/perf-mon

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

CREATE, READ, UPDATE, DELETE [CRUD] OPERATIONS
ARE FUNDAMENTAL IN ANY LANGUAGE OR
FRAMEWORK. HERE, WE ARE GOING TO TAKE YOU
THROUGH THE FLUTTER CRUD OPERATIONS WITH
FIREBASE AS THE BACKEND DATABASE.

Flutter as a basic CRUD

1. Create a new flutter application to begin.

import ‘package:flutter/material.dart’;

void main() async {
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: MyHomePage(),
);
 }
}

class MyHomePage extends StatefulWidget {
 @override
 _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(“Flutter CRUD with Firebase”),
),
 body: Center(
 child: Column(mainAxisAlignment: MainAxisAlignment.center, children:
<Widget>[
 RaisedButton(
 child: Text(“Create”),
),
 RaisedButton(
 child: Text(“Read”),
),
 RaisedButton(
 child: Text(“Update”),
),
 RaisedButton(
 child: Text(“Delete”),
),
]),
),
);
 }
}
import ‘package:flutter/material.dart’;

void main() async {
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: MyHomePage(),
);
 }
}

class MyHomePage extends StatefulWidget {
 @override
 _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(“Flutter CRUD with Firebase”),
),
 body: Center(
 child: Column(mainAxisAlignment: MainAxisAlignment.center, children:
<Widget>[
 RaisedButton(
 child: Text(“Create”),
),
 RaisedButton(
 child: Text(“Read”),
),
 RaisedButton(
 child: Text(“Update”),
),
 RaisedButton(
 child: Text(“Delete”),
),
]),
),
);
 }
}

In this example, we are using Android Studio as the
IDE. You could use VScode or any other as well. These
are the steps to implement an application, with the
functionalities of data insert, read, delete and update.

Here is the sketch of the UI of the main.dart file:

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

Configure the above Android project with the Firebase
project

a. Register the app
b. Download config file
c. Add Firebase SDK
d. Go to cloud Firestore - Test Mode
e. Create a new collection and data path to store data

a. Import the libraries

a. Create Data

b. Initialize the firebase inside your main function

b. Read Data

c. Update Data

d. Delete Data

c. To avoid the below error message

d. Create and initialize a Firestore instanceImport the
libraries

2. Create a new firebase project

3. Add a new android app to the firebase
project

5. Build the four CRUD functions in the
main.dart.

6. Implement the Firestore CRUD methods

4. Come back to the Android studio project
and import the Firebase dependencies to
pubspec.yaml file.

dependencies:
 flutter:
 sdk: flutter

 cloud_firestore:
 firebase_core :

import ‘package:cloud_firestore/cloud_firestore.dart’;
import ‘package:firebase_core/firebase_core.dart’;

void _create() async {
 try {
 await firestore.collection(‘users’).doc(‘testUser’).set({
 ‘firstName’: ‘John’,
 ‘lastName’: ‘Peter’,
 });
 } catch (e) {
 print(e);
 }
}

void main() async {
 WidgetsFlutterBinding.ensureInitialized();
 await Firebase.initializeApp();
 runApp(MyApp());
}

void _read() async {
 DocumentSnapshot documentSnapshot;
 try {
 documentSnapshot = await firestore.collection(‘users’).doc(‘testUser’).
get();
 print(documentSnapshot.data());
 } catch (e) {
 print(e);
 }
}

void _update() async {
 try {
 firestore.collection(‘users’).doc(‘testUser’).update({
 ‘firstName’: ‘Alan’,
 });
 } catch (e) {
 print(e);
 }
}

void _delete() async {
 try {
 firestore.collection(‘users’).doc(‘testUser’).delete();
 } catch (e) {
 print(e);
 }
}

[core/no-app] No Firebase App ‘[DEFAULT]’ has been created — call Fire-
base.initializeApp()

final FirebaseFirestore firestore = FirebaseFirestore.instance;

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

 void _update() async {
 try {
 firestore.collection(‘users’).doc(‘testUser’).update({
 ‘firstName’: ‘Alan’,
 });
 } catch (e) {
 print(e);
 }
 }

 void _delete() async {
 try {
 firestore.collection(‘users’).doc(‘testUser’).delete();
 } catch (e) {
 print(e);
 }
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(“Flutter CRUD with Firebase”),
),
 body: Center(
 child: Column(mainAxisAlignment: MainAxisAlignment.center, children:
<Widget>[
 RaisedButton(
 child: Text(“Create”),
 onPressed: _create,
),
 RaisedButton(
 child: Text(“Read”),
 onPressed: _read,
),
 RaisedButton(
 child: Text(“Update”),
 onPressed: _update,
),
 RaisedButton(
 child: Text(“Delete”),
 onPressed: _delete,
),
]),
),
);
 }
}

7. Implement the onpress command of
each button. The main. dart file looks as
follows

import ‘package:cloud_firestore/cloud_firestore.dart’;
import ‘package:firebase_core/firebase_core.dart’;
import ‘package:flutter/material.dart’;

void main() async {
 WidgetsFlutterBinding.ensureInitialized();
 await Firebase.initializeApp();
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: MyHomePage(),
);
 }
}

class MyHomePage extends StatefulWidget {
 @override
 _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {

 final FirebaseFirestore firestore = FirebaseFirestore.instance;

 void _create() async {
 try {
 await firestore.collection(‘users’).doc(‘testUser’).set({
 ‘firstName’: ‘John’,
 ‘lastName’: ‘Peter’,
 });
 } catch (e) {
 print(e);
 }
 }

 void _read() async {
 DocumentSnapshot documentSnapshot;
 try {
 documentSnapshot = await firestore.collection(‘users’).doc(‘testUser’).
get();
 print(documentSnapshot.data);
 } catch (e) {
 print(e);
 }
 }

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

HERE IS A SIMPLIFIED FLOW CHART OF THE STEPS
INVOLVED:

NOW, IF THE ABOVE ARE ALL EXECUTED WITH ‘FLUTTER
RUN’ THIS WILL CREATE A NEW APPLICATION ON YOUR
DEVICE.

WELL DONE! YOU CAN NOW USE THE FIREBASE REALTIME
DATABASE IN YOUR PROJECT!

Integrating Flutter + Firebase

1. Install Flutter SDK on your system. Here is
the official documentation to guide you.

2. Open Visual studio code and execute the
following command:

4. Now, we integrate Firebase into the
project.

3. This command will create a new project
with the name firebase_with_flutter.
Then to go to the directory of the project,
execute the following:

flutter create firebase_with_flutter

cd firebase_with_flutter
code.

a. Open the Firebase console
b. Create a new project
c. Click on the Android icon
d. Start adding information related to the project.
e. You can find the package name under the following

path android\app\src\main\AndroidManifest.xml

f. Download the Firebase Android config file google-
services.json

g. Add it under android/app. [Refer this to know
where]

h. Navigate to the android/build.gradle

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
package=”com.example.firebase_with_flutter”>

buildscript {
 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google’s Maven repository
 }
 dependencies {
 ...
 // Add this line
 classpath ‘com.google.gms:google-services:4.3.3’
 }
}

allprojects {
 ...
 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google’s Maven repository
 ...
 }
}

apply plugin: ‘com.android.application’
apply plugin: ‘kotlin-android’
apply plugin: ‘com.google.gms.google-services’ //this line

i. Add the google maven repository and the google-
services classpath:

j. Add the following inside your app android\app\
build.gradle:

https://flutter.dev/docs/get-started/install
https://stackoverflow.com/a/51783938/7015400

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

Apps using Firebase

Trivago The Economist

OVER 50MN MONTHLY USERS.
Skyscanner

OVER 10MN DOWNLOADS.
New York Times

OVER 100MN DOWNLOADS.
Duolingo

NPR One Venmo Half Brick

OVER 120MN DOWNLOADS.
PicCollage

ALEXA RANK, <620K GLOBALLY.
Fabulous

OVER 120MN USERS EACH MONTH.
Shazam

https://www.skyscanner.co.in/
http://pic-collage.com/
http://www.thefabulous.co/
http://www.shazam.com/

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

Pros & Cons

Expansive database
capabilities

Clear, simple
documentation

Free Basic Plan

Broad services and
features

Rapid, easy
integration and setup

Pros of Firebase

Limited querying
ability

Platform
dependence

Less support for iOS

Restricted data
migration

Android centered

Cons of Firebase

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

#01

#03

#02

Sharing Data

If data needs to be shared globally with various
clients/customers, Firebase is the way to go. With great
data storage options, pertinent information can be
easily allocated to different users.

Here is a list of contexts and situations that we believe are best suited for Firebase.

The Firestore Cloud is capable of processing 1 million
concurrent connections. This would be of great help
in building an app with limited sorting and filtering
queries.

Handling < 1 million Connections

Simple Apps

Applications that require basic options for integration
with third-party tools/services without complex
authentication or the processing of large volumes of
information will benefit from Firebase.

Best use cases for Firebases

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

#04

#06

#05

Now that we have simplified when and where to use Firebase, what about when not to use it?

Real-time features

Applications where real-time features like
notifications, chat, or real-time feed are required
make a good use case for Firebase. Especially in cases
where other parts of the code should not be altered.
For instance, the streaming platform Twitch.

The simple framework leads to faster development
making this a particularly viable option for building
MVPs and prototypes.

Rapid Delivery

Smooth Integration

Tools that enhance efficiency such as Data Studio,
Google Ads, BigQuery, AdMob, and Play Store can be
integrated easily. Additionally, Google Analytics is
automatically integrated, ensuring a seamless UX and
more intelligent marketing strategies.

A STUDY OF PERFORMANCE AND LOOKS BETWEEN FLUTTER + FIREBASE APPLICATIONS

#01

#03

#02

Handling Complex Queries

As it works on a flat hierarchy, Firebase is not built for
processing complex queries. This includes inverting
the order of certain items that cannot be executed
using Firebase. Additionally, concurrency might lead to
inconsistent performance when offline—for instance,
ERPs, Multi-workspace multi-user SaaS.

With a limited set of security standards and rules.
The focus is predominantly on data sharing across
multiple platforms and users. Unless this is the
requirement, Firebase is not built for zero data sharing.

Zero Data Sharing

Microservice Integration

With data caches in memory, the processes slow down
with time. This makes integrating microservices tough.

When not to use Firebase

Josh Software

#04

#05

Business Intelligence Functionalities

Firebase does not have the framework to support
business intelligence solutions.

There is no guarantee of data integrity with dynamic
data structures similar to JSON [free of form as it is
a NoSQL database]. This means information at the
database level cannot be constrained while keeping
the business logic at the code level. This means if
something is not handled correctly, bugs will be
inevitable, leading to chaotic data.

Josh Software is a recognized leader in Flutter app development. We specialize
in helping clients get ahead by leveraging emerging software and technology.
Start your Flutter development journey with us today.

Rapid Delivery

https://joshsoftware.digital/solutions/technologies/flutter-app-development-services-and-solutions-josh-software/

