MAYO CLINIC

Monitoring Of Breast Cancer Patients Left Ventricular Ejection Fraction **Using Al-Augmented Electrocardiograms**

Zachi Itzhak. Attia, MSc, Suraj Kapa, MD, FHRS, Peter A., Noseworthy, MD, FHRS, Samuel J., Asirvatham, MD, FHRS, Patricia A., Pellikka, Dorothy J Ladewig, MBA, Gaurav Satam, MBA, Francisco Lopez-Jimenez MD MS, Paul A., Friedman, MD FHRS and Joerg Herrmann, MD ¹ Cardiovascular Diseases, Mayo Clinic, Rochester, MN; ² Mayo Clinic Ventures, Mayo Clinic, Rochester, MN; ³ Statistics, Mayo Clinic, Rochester, MN

Introduction

- Trastuzumab has revolutionized treatment for women with HER-2 positive breast cancer, but cardiotoxicity remains one of the leading side effects.
- For this reason, three-monthly echocardiograms (TTEs) are recommended while on therapy. However, there has been considerable debate regarding the need and cost-effectiveness of such practice.
- For the general population we had developed an artificial intelligence (AI) model that can detect low ejection fraction (EF≤35%)

- We identified all women treated with trastuzumab for HER-2 positive breast cancer at Mayo Clinic Rochester between 01/01/2000 and 02/28/2019 with pre- and on-therapy TTEs available for review
- Overall, we had 403 TTE and ECG pairs 14 days apart or less from 257) unique patients, of these 61 values showed an EF<50%, 14 had EF≤40% and 9 had EF≤35
- We used a deep neural network model that was trained for the detection and prediction of low ejection from an ECG during treatments and at baseline

Figure 1

ESMO EF screening guidelines in trastuzumab pts

Methods Results • The AUC of the model was as following: for an

Figure 2

ROC for EF prediction by EKG – trastuzumab pts

- EF=35%: 0.95, EF≤ 40%: 0.89, and EF<50%:0.78
- the AUC of the model was 0.84 for EF≤ 40% or 40%<EF<50% and an EF drop of ≥10% from baseline
- Screening patients for an EF≤40%, the AI 12-lead ECG algorithm could reduce 143 TTEs (30% reduction) without missing 1 patient (NPV and sensitivity of 100%)
- Screening for an EF<=40% or 40%<EF<50% and a ≥10% EF drop from baseline, the number of TTEs can be reduced by 32%, missing only 1 (97.5% sensitivity)
- When using the AI model on the ECGs at baseline in the month before the first dose of trastuzumab, the baseline AI score could predict a drop of EF from 50% to 40% at any time during treatment with an AUC of 0.869

Conclusions

- The AI-augmented ECG is able to detect and to reliably rule out an EF<40% in breast cancer patients on trastuzumab therapy; this level of cardiac dysfunction commonly equates cessation of trastuzumuab therapy
- Al-augmented ECG could thus save as a gatekeeper to costly serial TTE monitoring in this patient cohort
- Further studies are needed to validate and optimize this AI ECG algorithm further, especially for the detection of less severe forms of cardiotoxicity with trastuzumab therapy

References

- Curigliano G, et al. ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23 Suppl 7:vii155-66
- Nowsheen S et al. J Am Heart Assoc. 2018;7:e008637. doi: 10.1161/JAHA.118.008637.
- Attia ZI et al. Nat Med. 2019;25:70-74.

Disclosure Information

Mayo Clinic has filed a patent around the work described in the publication and both Mayo Clinic and Drs Friedman, Lopez-Jimenez and Kapa and Zachi Attia will receive compensation if the patent is licensed

MAYO CLINIC

Monitoring Of Breast Cancer Patients Left Ventricular Ejection Fraction **Using Al-Augmented Electrocardiograms**

Zachi Itzhak. Attia, MSc, Suraj Kapa, MD, FHRS, Peter A., Noseworthy, MD, FHRS, Samuel J., Asirvatham, MD, FHRS, Patricia A., Pellikka, Dorothy J Ladewig, MBA, Gaurav Satam, MBA, Francisco Lopez-Jimenez MD MS, Paul A., Friedman, MD FHRS and Joerg Herrmann, MD ¹ Cardiovascular Diseases, Mayo Clinic, Rochester, MN; ² Mayo Clinic Ventures, Mayo Clinic, Rochester, MN; ³ Statistics, Mayo Clinic, Rochester, MN

Introduction

- Trastuzumab has revolutionized treatment for women with HER-2 positive breast cancer, but cardiotoxicity remains one of the leading side effects.
- For this reason, three-monthly echocardiograms (TTEs) are recommended while on therapy. However, there has been considerable debate regarding the need and cost-effectiveness of such practice.
- For the general population we had developed an artificial intelligence (AI) model that can detect low ejection fraction (EF≤35%)

- had EF≤35

Figure 1

ESMO EF screening guidelines in trastuzumab pts

	Conclusions
an 5:0.78 5 or 5 baseline	• The AI-augmented ECG is able to detect and to reliably rule out an EF<40% in breast cancer patients on trastuzumab therapy; this level of cardiac dysfunction commonly equates cessation of trastuzumuab therapy
e-lead ECG ction)	 AI-augmented ECG could thus save as a gatekeeper to costly serial TTE monitoring in this patient cohort
y of 100%) & and a TTEs can sensitivity)	 Further studies are needed to validate and optimize this AI ECG algorithm further, especially for the detection of less severe forms of cardiotoxicity with trastuzumab therapy
umab pts	References
	 Curigliano G, et al. ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23 Suppl 7:vii155-66
	 Nowsheen S et al. J Am Heart Assoc. 2018;7:e008637. doi: 10.1161/JAHA.118.008637.
	 Attia ZI et al. Nat Med. 2019;25:70-74.
	Disclosure Information